درباره وبلاگ


باسلام خدمت شما بازدیدکنندگان گرانقدر. ازاینکه وبلاگ من را برای تحقیق و مقاله های خود انتخاب کرده اید ممنونم. لطفا برای دسترسی راحتر به مطالب به بخش موضوعات مراجعه فرمایید. برای اطلاع اززمان بروز شدن وبلاگ به خبرنامه ان مراجعه فرمایید تا علاوه بر آن مطالبی برای شماارسال گردد که در وبلاگ منتشر نمیشود. لطفا برای بهبود کار ما و امیدوار کردن ما برای ادامه کار نظر ارسال فرمایید. باتشکر-امیررضا قربانی،مدیریت وبلاگ تحقیق ها
آرشيو وبلاگ



نام :
وب :
پیام :
2+2=:
(Refresh)

خبرنامه وب سایت:





آمار وب سایت:  

بازدید امروز :
بازدید دیروز :
بازدید هفته :
بازدید ماه :
بازدید کل :
تعداد مطالب : 64
تعداد نظرات : 1
تعداد آنلاین : 1





ابزار پرش به بالا ............................... ---------------------- ------------------------- ------------------------------ ................................. ...............
تحقیق ومقاله
هرآنچه می خواهید

مقدمه

img/daneshnameh_up/8/86/p20.jpg





لایه یونسفر در فرکانس حدود 30 مگا هرتز بصورت شفاف عمل می‌کند. علائم ارسالی بر روی این فرکانس مستقیما از میان آن می‌گذرد و در فضای بیرون گم می‌شوند. این فرکانسها همچنین در خط مستقیم دید حرکت می‌کنند. به این دلایل برای مقاصد ارتباطی آنها را باید به طریقه‌های گوناگون بکار گرفت. فرکانسهای 30 تا 300 مگاهرتز بسیار مفید و کارامد هستند، چون انتشار آنها با وجود محدود بودن پایدار است.

این امواج با چنین فرکانسی برای امواج تلویزیون کارآمدند، زیرا فرکانسهای بالای آنها اجازه حمل مقادیر فراوانی از اطلاعات مورد لزوم را می‌دهد و برای پخش صدای دارای کیفیت بالا نیز سودمند می‌باشد. علت این امر این است که در این محدوده از فرکانس برای کانالهای پهن جا وجود دارد. قسمتی از باند UHF را که بین 790 تا 960 مگاهرتز قرار دارد، می‌توان برای مرتبط ساختن ایستگاههایی با فاصله بیش از 320 کیلومتر به شیوه به اصطلاح پراکندگی در لایه تروپوسفر زمین بکار برد.

این شیوه به توانایی گیرنده دور دست در گرفتن بخش کوچکی از علائم فرکانس UHF که به دلیل ناپیوستگیهای بالای لایه تروپوسفر پراکنده شده بستگی دارد. یعنی علائم در جایی پراکنده می‌شوند که تغییرات شدید و تندی در ضریب شکست هوا وجود دارد. 

امواج مایکروویو چه نوع امواجی هستند؟

فرکانسهای بین 3000 تا 12000 مگاهرتز برای رابطه‌ای در خط مستقیم که در آن پیام رسانی از طریق آنتنهایی بر فراز برجهای بلند ارسال می شود بکار می‌رود. ایستگاههای تکرار کننده را که ساختاری برج مانند دارند نیز در فواصل 40 تا 48 کیلومتری (معمولا بالای تپه‌ها) کار می‌گذارند. این ایستگاهها امواج را می گیرند تقویت می‌کنند و دوباره به مسیر خود می‌فرستند. بخش مربوط به امواج مایکروویو برای ارتباط مراکز پرجمعیت بسیار مفید است، چون فرکانس بالا به معنای آن است که امکان حمل باند عریضی از طریق مدولاسیون وجود دارد و این نیز به این معنی است که هزاران کانال تلفن را می‌توان روی یک فرکانس مایکروویو فرستاد.

باند عریض این نوع فرکانس اجازه می‌دهد که علائم ارسالی تلویزیون سیاه و سفید و تلویزیون رنگی بر روی یک موج حامل منفرد ارسال شوند و چون این امواج دارای طول موج بسیار کوتاه هستند، برای متمرکز کردن علائم رسیده می‌توان از بازتابنده‌های بسیار کوچک و اجزای هدایت مستقیم بهره گرفت. 



تصویر

 

ماهواره چیست؟

دستگاههای ارتباطی ماهواره‌ها در باند مایکروویو عمل می‌کنند، در واقع ماهواره‌ها صرفا ایستگاه مایکروویو غول پیکری است در مدار زمین که با کمک پایگاه زمینی بازپخش می‌شود. این مدار تقریبا دایره‌ای شکل در ارتفاع 36800 کیلومتری بالای خط استوا قرار دارد و در این فاصله سرعت ماهواره با سرعت زمین برابر است و نیروی خود را بوسیله سلولهای خورشیدی از خورشید می‌گیرد. نیروی جاذبه زمین شتاب زاویه شی قرار گرفته در مدار را دقیقا بی اثر می‌سازد. در این فاصله دور چرخش ماهواره‌ها با حرکت دورانی زمین کاملا همزمان و برابر است و باعث می‌شود ماهواره نسبت به نقطه مفروض روی زمین ثابت بماند.

ایستگاه زمینی در کشور اطلاعات را با فرکانس 6 گیگاهرتز ارسال می‌کند. این فرکانس فرکانس UPLINK نامیده می‌شود. سپس ماهواره امواج تابیده شده را گرفته و با ارسال آن به نقطه دیگر که بر روی فرکانس حامل متفاوت DownLink برابر 4 گیگا هرتز است عمل انتقال اطلاعات از فرستنده به گیرنده را انجام می‌دهد. در واقع ماهواره اطلاعات گرفته شده را به سمت مقصد تقویت و رله می‌کند. آنتن ماهواره ، ترانسپوندر نام دارد. از مدار همزمان با زمین هر نقطه از زمین بجز قطبین در Line of sight است و هر ماهواره می‌تواند تقریبا 40 % از سطح زمین را بپوشاند. 



تصویر





آنتن ماهواره‌ها را طوری می‌شود طراحی کرد که علائم پیام رسانی ضعیفتر به تمام این ناحیه فرستاده شود و یا علائم قویتر را در نواحی کوچکتری متمرکز کند. بر حسب مورد این امکان وجود دارد که از ایستگاه زمینی در کشوری فرضی به چندین ایستگاه زمینی دیگر واقع در کشورهای گوناگون علائم ارسال کرد. بطور مثال: وقتی برنامه‌ای تلویزیونی در تمام شهرها و دهکده‌های یک یا چند کشور پخش شود، در این حالت ماهواره ، ماهواره پخش برنامه است. ولی وقتی علائم ارسال ماهواره در سطح گسترده‌ای از زمین انتشار یابد، ایستگاههای زمینی باید آنتنهای بسیار بزرگ و پیچیده‌ای داشته باشند. هنگامی که علائم ارسالی ماهواره در محدوده کوچکترین متمرکز می‌شوند و به حد کافی قوی هستند، می توان از ایستگاههای زمینی کوچکتر ساده‌تر و ارزانتر استفاده کرد. 

مکان ماهواره‌ها

از آنجایی که ماهواره‌ها برای جلوگیری از تداخل امواج رادیویی باید جدا از هم باشند، لذا شماره مکانهای مداری در مدار همزمان با زمین که امکان استفاده آن برای ارتباطات وجود دارد محدود است. از اینرو جای شگفتی نیست که وظیفه مدیریت در امور دستیابی به مدار و استفاده از فرکانسها برای انواع روز افزون و متنوع کاربردهای زمینی و ماهواره‌ای بوسیله شمار روز افزونی از کشورها بی‌نهایت دشوار شده است. از سویی استفاده از ماهواره‌ها در کشورهای متمدن و پیشرفته به عملکرد دقیق و عملیات روز به روز دقیقتر نه تنها از نظر بکار گیری شیوه خودشان ، بلکه از نظر همسایگانشان در مدار همزمان با زمین نیاز می‌باشد.

برخی از ماهواره‌ها نیز در مدار ناهمزمان با چرخش زمین (non - geosynchronous) قرار داده می‌شوند. در ماهواره‌های ناهمزمان با مدار زمین ، ماهواره دیگر در دید ایستگاه زمینی نیست، زیرا که سطح افق زمین را پشت سر می‌گذارد و از دیدرس خارج می‌شود. در نتیجه برای اینکه ارسال همواره ادامه یابد به چندین ماهواره از این نوع نیاز است و چون نگهداری و ادامه کار چنین شیوه ارتباطی بسیار پیچیده و گران است، لذا کاربران و متخصصان طراحی ماهواره‌ها بیشتر جذب ماهواره همزمان با زمین می‌شود. 



تصویر





فرکانسهای بالای فرکانس مایکروویو چه نوع فرکانسهایی هستند؟

با کشف لیزر برای نخستین بار آن قسمت از محدوده فرکانسی که بالاتر از باند فرکانسهای مایکروویو بودند به منظور حمل پیامهای بی‌سیم در نظر گرفته شدند. پرتو های لیزری تحت تأثیر عواملی مانند مه - غبار — خرابی وضع هوا و روزهای بسیار داغ به شدت ضعیف می‌شوند. اگر چه لیزر برای حمل اطلاعات تا مسافتهای کوتاه خط ارتباطی بسیار عالی ایجاد می‌کند، ولی چون پرتو لیزر خاصیت هدایت شونده بالایی دارد باز داشتن یا سد کردن آن بسیار دشوار است. این امر سبب می‌شود برای ارتش و بعضی از مقاصد نظامی که شیوه‌های آنها باید دارای حفظ اسرار باشد بسیار سودمند است. در ضمن دستگاه لیزر برای کاربردهای ارتباط سیار از سبکی و قابلیت حمل خوبی برخوردار است.

برخلاف امواج رادیویی ، امواج نوری را نمی‌توان با ایجاد جریانهای متناوب در سیمها تولید کرد. آنها تنها با فرآیند‌هایی که داخل اتم روی می‌دهد بوجود می‌آیند. فناوری تار نوری مشابه موج رسان فلزی مایکروویو برای پرتو تابانی الکترومغناطیسی در ناحیه نور مرئی تعریف شده است. این شیوه بطور کلی شامل رشته‌ای شیشه‌ای با نازکی موی انسان است که از هدر رفتن انرژی نور در مسافت طولانی جلوگیری می‌کند. همچنین بر خلاف پرتوی نور معمولی پرتوی نور لیزری تکفام است، یعنی فقط دارای یک فرکانس تنها است. پرتوی لیزر دارای گستره پهن فرکانس است که خاصیت گسیختگی نور را ندارد، به همین دلیل آنها را می‌توان دقیقا به همان طریق که با فرکانسهای مایکروویو تعدیل می‌شوند و تغییر نوسان می‌دهند را با پیامهای تلفنی و اطلاعات و علائم تصویری تعدیل کرد.

به هر حال چون فرکانس آنها خیلی بالاتر است به تناسب آن می‌توان تعداد بیشتری از امواج و کانالها را انتقال دهند. بطور کلی مقایسه بین شیوه‌های مختلف ارسال امکان پذیر می‌باشد. روابط بین فرستنده و گیرنده خواه انتشار از روی سیم و خواه از هوا به نوع ساخت شیوه ارتباطی بستگی دارد و به همین ترتیب باند به فرکانس بکار رفته به شرایط حل مسأله ارتباطاتی وابسته است. بیشتر فرکانسهای در دسترس را مقررات ملی و توافقهای بین المللی تعیین می‌کنند. اگر چه تصمیمات مربوط به شیوه‌ها و نحوه ارسال امری فنی به شمار می‌آید، ولی در اکثر اوقات ملاحظات سیاسی آن را در بر می‌گیرد. 



 


img/daneshnameh_up/4/4d/fazaii0.jpg
لایکا ، اولین سگ فضا نورد
اتحاد جماهیر شوروی سابق در سال
1957 م. سگی به نام لایکا را به فضا
فرستاد. لایکا در فضا جان باخت، زیرا هیچ راهی
برای بازگشت سفینه به زمین وجود نداشت.

فضانوردان کسانی هستند که برای کار کردن در فضا آموزش می‌بینند. آنان گاهی هفته‌ها و ماهها در ایستگاههای فضایی یا سفینه‌های فضایی به پژوهشهایی ویژه می‌پردازند.

دیدکلی

آزمایشهایی که فضانوردان انجام می‌دهند به کشف آنچه در فضا وجود دارد یا تأثیر شرایط فضا بر زمین کمک می‌کند. از سال 1961 میلادی ، که نخستین سفر فضایی انسان انجام شد، فضانوردان توانسته‌اند روی ماه راه بروند و در مدار زندگی کنند. 



img/daneshnameh_up/b/bc/thomas.jpg
توماس

کار در فضا

کار در سفینه فضایی شامل نگهداری و تعمیر ابزارها ، آزمایشهای علمی و پرتاب و تعمیر ماهواره‌ها است. برای آنکه فضانوردی بتوانند با سفینه فضایی پرواز کند، باید دوره‌ی اموزش خلبانهای ارتش را بگذراند. متخصصان سفینه‌های فضایی مهندسان یا دانشمندانی تراز اول هستند. 

نیروهای شدید

فضانوردان باید برای شرایط غیر عادی فضا آماده شوند. ابتدا باید آموزش ببینند که چگونه در برابر نیروی گرانش (نیروی شدیدی که هنگام برخاستن سفینه باعث می‌شود انسان وزن خود را شش برابر وزن معمول احساس کند)، مقاومت کنند. برای عادت کردن به کمبود گرانش در فضا ، فضانوردان در محفظه‌های بسیار بزرگ آب و هواپیماهای بلند پرواز که احساس بی وزنی را به وجود می‌آورند، تمرین می‌کنند. 



img/daneshnameh_up/a/a0/C3-21-B070.JPG

بیماری فضا

بیش از چهل درصد فضانوردان چند روز اول دچار بیماری فضازدگی می‌شوند؛ زیرا بی وزنی روی حس تعادل آنها اثر می‌گذارد. همچنین کمبود گرانش به تدریج گلبولهای قرمز خون فضانوردان را که حامل اکسیژن هستند کاهش می‌دهد و باعث خستگی می‌شود. 

ورزشگاه فضایی

ممکن است به سبب کمبود گرانش در فضا ، قد فضانوردان تا پنج سانتیمتر بلندتر و قلب ، ماهیچه‌ها و استخوانهای آنها ضعیف شود. این تغییرها را می‌توان با برنامه غذایی خاص و انجام دادن تمرینهای ورزشی روزانه و منظم در ورزشگاهی درون سفینه مهار کرد. 



img/daneshnameh_up/b/bb/C3-21-A141.JPG

لباس فضایی و توپ نجات

لباس فضایی ای. ا. یو. فضانورد را هنگامی که خارج از سفینه کار می‌کند، از تابشها حفظ می‌کند. توپ نجات مخصوصی را برای جابجایی فضانوردان به سفینه‌ای دیگر ، در مواقع اضطراری طراحی کرده‌اند. 

حد مجاز پرتوگیری

سفینه‌های فضایی پیوسته در معرض بیماران ذره‌های پرتوزایی هستند که بطور معمول جو زمین جلوی آنها را می‌گیرد. هر فضانوردی با خود ابزاری دارد که مقدار پرتویی را که در معرض آن است، اندازه می‌گیرد. حد مجاز پرتوگیری در طول عمر انسان صد راد (واحد تابش) است. این حد مدت زمانی را که یک فضانورد می‌تواند در فضا به سر برد محدود می‌کند و مأموریتهای فضایی به مریخ یا سیاره‌های دور دیگر را که بیش از دو سال به طول می‌انجامد، به خطر می‌اندازد. وقتی سفینه در معرض تابش مستقیم خورشید باشد، دما در فضا بین 200- درجه تا بیش از 100 درجه سانتیگراد در نوسان است محفظ دمای پایدار در سفینه فضایی بسیار مهم است و این کار به همان روش دستگاههای تهویه‌ی هوا در ساختمانهای روی کره‌ی زمین ، انجام می‌شود. در فضا شب و روز وجود ندارد؛ ولی فضانوردان برای آنکه بدانند چه وقت کار و چه وقت استراحت کنند برنامه روزانه خود را در دوره‌ای زمانی که به اندازه شبانه روز زمین است، تنظیم می‌کنند. 


 

مقدمه

موشکهای فضایی مانند موشکهای آتش بازی عمل می‌کنند. سوخت با ماده‌ای به نام اکسنده که حاوی گاز تسریع کننده احتراق یعنی اکسیژن است، ترکیب می‌شود. آنگاه این ترکیب که یک پیشران محسوب می‌شود، می‌سوزد و گازهای داغی را تولید می‌کند، این گازها منبسط شده ، از طریق یک دماغه خارج و باعث می‌شوند موشک به طرف بالا حرکت کند. این واکنش برای اولین بار در قرن هفدهم توسط دانشمند انگلیسی ، اسحاق نیوتن ، در قانون سوم حرکتش بیان شد. او اظهار داشت که برای هر عملی (خروج گازها در اینجا) عکس العملی است مساوی و مخالف جهت آن (در اینجا ، حرکت موشک). 

 

img/daneshnameh_up/5/54/Mooshak.jpg





نیرویی که یک موشک را به طرف جلو حرکت می‌دهد، نیروی پیشران نامیده می‌شود. قدرت نیروی پیشران به سرعت خارج شدن گاز خروجی بستگی دارد. نیروی پیشران به موشک شتاب داده ، باعث افزایش سرعت آن می‌شود. مقدار شتاب نیز بستگی به جرم موشک دارد. هر چه موشک سنگینتر باشد، برای رسیدن به فضا ، به نیروی پیشران بیشتری نیاز است. تا وقتی که موتورهای موشک ، روشن و در حال تولید نیروی پیشران هستند، شتاب فضا پیما نیز هر لحظه زیادتر می‌شود.

موتور موشک یا از پیشران مایع استفاده می‌کند یا جامد ، اما بعضی اوقات ، یک موشک کامل ممکن است. در مراحل مختلف از هر دو نوع پیشران استفاده کند. کارشناسان موشکهایی را پیشنهاد کرده‌اند که از انرژی اتمی به عنوان سوخت استفاده می‌کنند، چرا که آنها از نظر مصرف انرژی بسیار مقرون به صرفه‌اند. اما ترس از خطر استفاده از سوخت اتمی مانع استفاده از این موشکها شده است. 

 

img/daneshnameh_up/5/5e/Mooshak2.jpg



 

موشکهایی با سوخت پیشران جامد

سوختهای پیشران از یک نوع سوخت و یک اکسنده تشکیل شده‌اند. برای روشن شدن موشک ، کافی است یک جرقه کوچک سوخت پیشران آنرا آتش بزند. سوخت آتش گرفته تا آخرین قطره می‌سوزد. گازهای حاصل از سوخت پیشران را از طریق دماغه انتهایی موشک خارج می‌شوند. اولین موشکها را احتمالا در قرن یازدهم میلادی در کشور چین ساخته‌اند. آنها موشکهایی بودند که از سوخت پیشران جامد استفاده می‌کردند. سوخت موشک یک نوع باروتبود که از مخلوطی از نیترات پتاسیم ، زغال چوب و سولفور تشکیل شده بود.

موشکهایی که از سوخت پیشران جامد استفاده می کنند، اغلب به عنوان موشکهای تقویت کننده‌ای استفاده می‌شوند که نیروی اولیه موشکهای بزرگتر را تأمین می‌کنند. موشکهای بزرگتر خود از سوخت پیشران مایع استفاده می‌کنند. بزرگترین موشکهای مصرف کننده سوخت جامد با 45 متر ارتفاع جزء موشکهای تقویت کننده شاتل فضاییایالات متحده محسوب می‌شوند. آنها حاوی 586500 کیلوگرم (2/1 میلیون پوند) سوخت پیشران هستند که بطور متوسط 13 میلیون تن (5/3 میلیون پوند نیرو) نیروی پیشران را تولید می‌کنند.

این موشکها را طوری طراحی کرده‌اند که بعد از اتمام سوخت و افتادن در دریا ، از دریا بیرون کشیده شده ، دوباره برای مأموریتهای بعدی سوختگیری می‌شوند. ساخت موشکهایی که از سوخت جامد استفاده می‌کنند چندان دشوار نیست. آنها مقدار زیادی نیروی پیشران را در یک مدت زمان کم تولید می‌کنند. تنها ایراد این نوع موشکها این است که بعد از روشن شدن به راحتی خاموش نمی شوند. به عبارت دیگر ، نمی‌توان آن را به آسانی تحت کنترل درآورد. 

نیروی پیش برنده

شاتل فضایی ایالات متحده از موشکهای تقویت کننده عظیم الجثه‌ای برخوردار است که از سوخت پیشران جامد استفاده می کنند. این پیشران از پر کلرات آمونیم به عنوان اکسنده و پودر آلومینیوم به عنوان سوخت تشکیل شده است. 

 

img/daneshnameh_up/7/77/Mooshak3.jpg



 

موشکهای با سوخت مایع

اکثر موشکهایی که از آنها در پروازهای فضایی استفاده می‌شود، از سوخت پیشران مایع بهره می برند. سوخت و اکسنده که در مخزنهای جداگانه‌ای نگهداری می‌شوند، هر دو مایع هستند. پمپهای قدرتمندی آنها را به محفظه احتراق می‌برند؛ در آنجا آنها باهم ترکیب شده ، شروع به تولید گازهای خروجی می‌کنند. گازهای مذکور نیز به نوبه خود از دماغه انتهایی موشک خارج می‌شوند. بعضی از موشکها از یک ماده قابل اشتعال سریع برای شروع احتراق استفاده می‌کنند. سوخت پیشران سایر موشکها هگام ترکیب سوخت و اکسنده شروع به احتراق می‌کند. 

فرآیند احتراق پیشران مایع

اکسنده و سوخت باهم ترکیب می‌شوند و در محفظه احتراق شروع به سوختن می‌کنند. سپس گازهای خروجی حاصل از فرآیند احتراق از دماغه خارج و به عنوان نیروی پیشران ، موشک را به طرف جلو حرکت می‌دهند. 

 

img/daneshnameh_up/d/d5/Mooshak_marahel.jpg



 

مراحل مختلف یک موشک

برای سفر به فضا ، یک موشک چند مرحله‌ای مورد نیاز است. هر کدام از این مراحل یک موشک جداگانه محسوب می‌شود که هم دارای منبع سوخت است و هم موتور. بسته به وزن محموله ماهواه ، از موشکهای تقویت کننده‌ای در کنار مراحل مختلف موشک برای افزایش نیروی موتورها استفاده می‌شود. مرحله اول ، کل موشک را از زمین بلند می‌کند و به محض اتمام سوخت از بقیه موشک جدا شده، به زمین سقوط می‌کند. آنگاه موتور مرحله دوم روشن می‌شود. بخاطر وزن سبکتر موشک در این مرحله ، شتاب موشک نیز بیشتر می‌شود؛ این سیر صعودی شتاب با جدا شدن هر مرحله از موشک ادامه می‌یابد. مرحله پایانی موشک قسمت حامل ماهواره را به فضا و به طرف مقصدش حمل می کند. 



 

img/daneshnameh_up/7/72/Kahkeshanenamonazam.jpg
منظومه کهکشانی بزرگ
اندازه ابر ماژلانی بزرگ ، تقریبا یک چهارم اندازه
کهکشان راه شیری است و حتی می‌توان آنرا قمر
کهکشان راه شیری است و حتی می‌توان
آنرا قمر کهکشان راه شیری به حساب آورد.
img/daneshnameh_up/6/68/Kahkeshanemarpichi.jpg
چرخش در فضا
چنانچه در کهکشان ام100 مشاهده می‌شود، ستاره‌ها
و ابرهای گازی بطور مارپیچ از بازویی به بازوی دیگر در
حرکت هستند. این عامل سبب تشکیل ستاره‌های
جدید در ابرهای گازی آبی رنگ می‌شود.
img/daneshnameh_up/7/7d/Kahkeshanemilehei.jpg
ستاره‌ها در قسمت میله‌ای
برخی کهکشانهای مارپیچی دارای چندین بازو
هستند، ولی یک کهکشان مارپیچی میله‌ای مانند
این که در تصویر می‌بینید (ان.جی.سی 1313) ، فقط دو بازو دارد.
img/daneshnameh_up/0/08/Kahkeshanebeyzavi.jpg
بازماندگان گذشته‌ها
تقریبآ تمام ستاره‌های کهکشانهای بیضوی
مانند ان.جی.سی 1399 که در تصویر می بینید
دارای طول عمری بیش از 10 میلیارد سال هستند.
img/daneshnameh_up/d/d4/Kahkeshanefaal.jpg
آشوب کیهانی
این تصویر که توسط تلسکوپ فضایی هابل تهیه شده
نمایانگر ناحیه مرکزی کهکشان فعال ان.جی.سی
1069 می‌باشد.
img/daneshnameh_up/d/d9/Tasadomekahkeshan.jpg
جفت کهکشانی آی.جی 29 و آی.جی 30
در این تصویر که رنگهایش ساختگی هستند، یک
دنباله کشندی دو کهکشان را به هم وصل کرده
شکل یک قارچ چتری را بوجود می‌آورد.

مقدمه

کهکشان به مجموعه ستارگان ، گاز و غبار گفته می شود که با نیروی جاذبه کنار هم نگاه داشته شده‌اند. کوچکترین کهکشانها دارای عرضی برابر با چند صد سال نوری ، شامل حدود 100000 میلیارد سال ستاره هستند. بزرگترین کهکشانها تا 3 میلیون سال نوری عرض دارند و شامل بیش از 1000 میلیارد ستاره هستند.

اشکال کهکشانها بر اساس شیوه‌ای طبقه بندی می‌شود که طبق شیوه طبقه بندی ستاره شناس آمریکایی ، ادوین هابل (1953- 1986) ، شکل یافته است. در مورد تکامل کهکشانها اطلاعات قطعی کمی در دست است. تنها مطلب مورد اطمینان این است که کهکشانها میلیاردها سال پیش به شکل توده‌ای از ابرهای گازی و غباری بوجود آمدند. 

کهکشان بیضوی

کهکشانهای نامنظم هیچ شکل یا ساختار منظمی ندارند، آنها دارای جرم بیشتری از کهکشانهای دیگر هستند و بیشتر ستاره‌های موجود در آنها دارای طول عمر کم و درخشان می‌باشند. با وجود اینکه بسیاری از کهکشانهای نا منظم در بر گیرنده نواحی تابان گازی هستند که ستاره‌ها در آنها شکل می‌گیرند، بیشتر گاز میان ستاره ای کهکشانها بایستی متراکم شوند تا ستاره‌های جدیدی بوجود آورند. حدود 5% از هزار کهکشان درخشان را کهکشانهای نا منظم تشکیل می‌دهند. این در حالی است که یک چهارم کهکشانهای شناخته شده نیز کهکشانهای نامنظم هستند. 

کهکشانهای مار پیچی

کهکشانهای مارپیچی دارای بازوهایی هستند که شکلی مارپیچی در اطراف بر آمدگی مرکزی یا هسته ، قرصی ایجاد می‌کنند که چرخش هسته با چرخش بازوهای آن همراه می‌شود. جوانترین ستاره‌های کهکشانهای مارپیچی در بازوهای کم توده یافت می‌شوند و ستاره‌های کهن اکثرا در هسته متراکم قرار دارند. کهنترین ستاره‌ها در هاله‌های کروی پراکنده قرار دارند و اطراف قرص کهکشانی را فرا گرفته‌اند. بازوهای مذکور همچنین دارای غبار و گاز فراوانی هستند که منجر به تشکیل ستاره‌های جدید می‌شود. 

کهکشان مارپیچی میله ای

یک کهکشان مارپیچی میله‌ای دارای یک هسته برآمدگی مرکزی کشیده شده و میله‌ای شکل است. همزمان با چرخش هسته اینطور به نظر می‌رسد که در هر سوی هسته یک بازو نیز می‌چرخد. برخی ستاره شناسان عقیده دارند کهکشان راه شیری نیز یک کهکشان مارپیچی میله‌ای است. شکل کهکشانهای مارپیچی و کهکشانهای مارپیچی میله‌ای متغیر است.

از کهکشانهای با برآمدگیهای مرکزی بزرگ با بازوهای نه چندان بهم پیوسته تا کهکشانهای با برآمدگیهای مرکزی کوچک و بازوهای آزاد. گر چه کهکشانهای مارپیچی و مارپیچی میله‌ای پیش از این به عنوان دو نوع کهکشان متفاوت طبقه بندی می‌شدند، ولی امروزه ستاره شناسان آنها را مشابه می‌دانند. 

کهکشانهای بیضوی

کهکشانهای بیضوی از نظر شکل ، از شکل بیضی‌گون (شبیه توپ فوتبال امریکایی) تا شکل کروی متغیر هستند و اشکالی ما بین این دو نیز یافت می‌شوند. بر خلاف کهکشانهای دیگر که نوری آبی از ستاره‌های فروزان و کم عمر منعکس می‌کنند، کهکشانهای بیضوی زرد رنگ بنظر می‌رسند. علت این امر توقف شکل گیری ستارگان در این کهکشانها می‌باشد که در نتیجه تقریبا تمام نور آنها از ستاره‌های غول سرخ که دارای طول عمر زیادی هستند تأمین می‌شود. 

کهکشانهای فعال و غیر عادی

از تمام کهکشانها میزان معینی تشعشع الکترومغناطیسی ساطع می‌شود. برخی کهکشانها ، به طرز غیر عادی ، مقادیر زیادی تشعشع تابش می‌کنند. این کهکشانها ، کهکشانهای فعال نامیده می‌شوند. انرزی آنها از منبعی با جرم بسیار زیاد اما به هم فشرده که در مرکز کهکشان فعال قرار دارد تأمین می‌شود.

انرژی اغلب بصورت اشعه ایکس ، موج رادیویی و همچنین نور است و میزان انرژی آزاد شده به قدری زیاد است که نمی‌توان تصور کرد ستاره‌ها آنرا بوجود آورده باشند. ستاره شناسان بر این عقیده اند که تنها جسمی که قادر است این مقدار انرژی را ازاد کند یک حفره سیاه فوق العاده پر جرم است. بنابر این، علت اینکه برخی کهکشانها از جمله کهکشان خودمان انرژی نسبتا کمی آزاد می‌کنند این است که حفره سیاه مرکزی کوچکی را در میان گرفته‌اند. 

کوازارها

بنظر می‌رسد که کوازارها (شبه ستاره‌ها) هسته فعال کهکشانهای دور دست باشند. آنها درخشانترین ، سریعترین و دورترین اجرام شناخته شده در جهان هستند. کوازارها همانند ستارگان از سطح زمین به مثابه یک نقطه نورانی خیلی ریز دیده می‌شوند. اگر چه کوازارها فقط به اندازه منظومه شمسی هستند، نور برخی از آنها مسافتی در حدود 10 میلیارد سال نوری را طی می کند تا به ما برسد. ما برای اینکه بتوانیم چنین اجرام دوری را شناسایی کنیم نیاز به تابش زیاد نور آنها داریم. تشعشع انرژی بعضی از کوازارها حدود 100 برابر تشعشع کهکشانهای عظیم است.

با گسترش جهان کوازارها که در لبه خارجی آن قرار دارند بسرعت از زمین فاصله می‌گیرند. دورترین کوازارهایی که قابل رویت حدود 12 میلیارد سال نوری در جهت انتهای قابل مشاهده جهان قرار دارند. بخاطر زمان زیادی که طول می‌کشد تا نور کوازارها به زمین برسد، این کهکشانها ستاره شناسان را قادر می‌سازند تا جهان را در اولین مراحل شکل گیری ، مورد مطالعه قرار دهند. کوازارها فوق العاده درخشان و در عین حال بسیار مهم فشرده می‌باشند. در مقایسه با گستره کهکشان راه شیری که 100000 سال نوری می‌باشد، کوازارها قطری معادل چند روز یا هفته نوری را تشکیل می‌دهند. 

کهکشانهای رادیویی

تمامی کهکشانها ، موج رادیویی ، نور قابل رویت و انواع تشعشع از خودشان تولید می‌نمایند. انرژی رادیویی یک کهکشان رادیویی خیلی متراکمتر از انرژی کهکشانهای معمولی است. این انرژی از دو قطعه خیلی بزرگ ، یا ابرهای عظیم الجثه متشکل از ذرات در حال دور روشن از کهکشانها تشتشع می‌یابند.

این ابرهای عظیم از فورانهای گازی که از مرکز کهکشان با سرعتی معادل یک پنجم سرعت نور خارج می‌شوند، در آسمان شکل می‌گیرند. به نظر می‌رسد که فوران این انرژی عظیم توسط یک حلقه پیوستگی صورت می‌گیرد که یک حفره سیاه خیلی متراکم را در بر می‌گیرد و در مرکز کهکشان واقع است. از هر یک میلیون کهکشان فقط یکی از آنها یک کهکشان رادیویی است. 

تصادم کهکشانها

بیشتر کهکشانها از کهکشانهای همسایه خود صد هزار سال نوری فاصله دارند. به هر حال، بعضی از کهکشانها تا اندازه‌ای به یکدیگر نزدیک می‌شوند که نیروی جاذبه دو طرفه آنها اشیاء موجود در کهکشانها دیگر را به اطراف خود می‌کشد و این امر باعث بوجود آمدن توده‌هایی به نام دنباله‌های کشندی می‌گردد، که این دنباله‌ها مانند پلی کهکشانها را به یکدیگر وصل می‌نمایند. نزدیکی بیش از حد کهکشانها ممکن است، توأم با تصادم آنها گردیده و به دنبال این عمل یک تغییر شکل بنیادی در شکل ظاهری آنها صورت پذیرد. 


 

ستارگان اجرامی هستند آسمانی که دارای منبع انرژی بوده (به سه صورت انرژی گرانشی ، حرارتی و هسته‌ای) و این انرژی را با تابش خود بصورت امواج الکترومغناطیسی خرج می‌کند (از امواج رادیویی تا اشعه گاما).

 

مقدمه

بطور کلی ستارگان دارای مراحل مختلف جنینی ، کودکی و جوانی و پیری هستند. پس از اکتشاف برابری جرم و انرژی توسط انیشتین ، دانشمندان تشخیص دادند، که کلیه ستارگان باید تغییر و تحول یابند. هر ستاره هنگامی که نور (انرژی) پخش می‌کند، مقداری از ماده خویش را مصرف می‌کند. ستارگان همیشگی نیستند، روزی به دنیا آمده‌اند و روزی هم از دنیا خواهند رفت. ستارگان گویهای بزرگی از گاز بسیار گرم هستند که بواسطه نورشان می‌درخشند.

در سطح دمای آنها هزاران درجه است و در داخل دمایشان بسیار بیشتر است. در این دماها ماده نمی‌تواند به صورتهای جامد یا مایع وجود داشته باشد. گازهایی که ستارگان را تشکیل می‌دهند بسیار غلیظتر از گازهایی هستند که معمولا بر سطح زمین وجود دارند. چگالی فوق العاده زیاد آنها در نتیجه فشارهای عظیمی است که در درون آنها وجود دارد. ستارگان در فضا حرکت می‌کنند، اما حرکت آنها به آسانی مشهود نیست. در یک سال هیچ تغییری را در وضعیت نسبی آنها نمی‌توان ردیابی کرد، حتی در هزار سال نیز حرکت قابل ملاحظه‌ای در آنها مشهود نمی‌افتد. 

 

img/daneshnameh_up/5/5c/stars2.jpg




نقش و الگوی آنها در حال حاضر کم و بیش دقیقا همان است که در هزار سال پیش بود. این ثبات ظاهری در نتیجه فاصله عظیمی است که میان ما و آنها وجود دارد. با این فواصل چندین هزار سال طول خواهد کشید تا تغییر قابل ملاحظه‌ای در نقش ستارگان پدید آید. این ثبات ظاهری مکان ستارگان موجب شده است که نام متداول (ثوابت) به آنها اطلاق شود. اختر فیزیکدانان بر این باورند که در بعضی کهکشانها ، از جمله کهکشان راه شیری ، ستارگان نوزاد بسیاری در حال تولد هستند، افزون بر آن که پژوهشگران اظهار می‌دارند تکامل ، تخریب و محصول نهایی یک ستاره ، به جرم آن بستگی دارد. در واقع سرنوشت نهایی ستاره که تا چه مرحله‌ای از پیشرفت خواهد رسید با جرم ستاره ارتباط مستقیم دارد. 

نحوه تشکیل ستاره

گوی آتشین مورد نظر در نظریه انفجار بزرگ ، حاوی هیدروژن و هلیوم بود، که در اثر انفجار بصورت گازها و گرد و غباری در فضا بصورت پلاسمای فضایی متشکل از ذرات بسیاری از جمله الکترونها ، پروتونها ، نوترونها و نیز مقداری یونهای هلیوم به بیرون تراوش می‌کند. با گذشت زمان و تراکم ماده دربرخی سحابیها شکل می‌گیرند. این مواد متراکم رشد کرده و توده‌های عظیم گازی را بوجود می‌آورند که تحت عنوان پیش ستاره‌ها معروفند و با گذشت زمان به ستاره مبدل می‌شوند. بسیاری از این توده‌ها در اثر نیروی گرانش و گریز از مرکز بزرگ و کوچک می‌شوند، که اگر نیروی گرانش غالب باشد، رمبش و فرو ریزش ستاره مطرح می‌شود و اگر نیروی گریز از مرکز غالب شود، احتمال تلاشی ستاره و شکل گیری اقمار و سیارات می‌رود. 

مقیاس قدری

همه ستارگان به شش طبقه روشنایی که قدر نامیده می‌شود، تقسیم شده‌اند. روشنترین ستارگان دارای قدر اول و کم نورترین ستارگان که توسط چشم غیر مسلح قابل روءیت بودند به عنوان ستارگان قدر ششم و بقیه ستارگان داراب قدرهای بین 16 - 1 هستند. قدر یک ستاره عبارت است از: سنجش لگاریتمی از روشنایی ستارگان ، اگر قدر یک ستاره را با m نمایش دهیم، داریم:
 

(قدر ظاهری) 2.5logL + Cte = m-


که مقدار ثابت Cte همان صفر مقیاس قدری است. 

 

img/daneshnameh_up/f/fd/C3-21-C043.jpg

 

روشنایی ستاره

مقدار انرژی تابیده شده از ستاره به واحد سطح زمین را روشنایی یک ستاره می‌نامند. مقدار ثابت (صفر مقدار قدری) را طوری انتخاب می‌کنند که قدر ستاره α چنگ رومی (Vega) برابر صفر شود. علامت منفی در فرمول نشان می‌دهد که قدر روشنایی ستاره بالا باشد، دارای قدر پایین خواهد بود. 

رنگ ستارگان

هر وسیله‌ای که برای آشکارسازی نور بکار می‌رود دارای حساسیت طیفی است. مثل چشم انسان که اولین وسیله‌ای است برای آشکارسازی نور و حساسیت چشم برای نورهای مختلف یکسان نیست. هر وسیله دیگری هم که برای اندازه گیری نور بکار می‌رود مثل فیلمهای عکاسیبرای نورهای با طول موجهای متفاوت ، دارای حساسیت یکسان نیست. پس روشنایی یک جسم بستگی به نوع وسیله اندازه گیری شده دارد. بر این اساس قدرهای مختلفی داریم، که یکی از آنها قدر دیدگانی و دیگری قدر عکسبرداری می‌باشد. 

طیف ستارگان

هنگام مطالعه طیف ستارگان (یا همان بررسی کیفی ستارگان) مشاهده می‌شود که اختلاف فاحشی بین ستارگان وجود دارد. از آنجایی که وجود هر خط سیاه در طیف ستاره بیانگر وجود یک عنصر شیمیایی ویژه در اتمسفر آن ستاره است، شاید به نظر می‌رسد که علت اختلاف در طیف ستارگان بخاطر اختلاف در مواد شیمیایی سازنده ستارگان باشد. ولی در نهایت چنین نیست، بلکه علت اختلاف طیف ستارگان دمای ستارگان می‌باشد. چون ستارگان دارای دماهای متفاوتی هستند، طیف آنها نیز متفاوت است. 
 

img/daneshnameh_up/a/a5/C3-21-A093.jpg

 

اندازه گیری دمای ستارگان

در مورد ستارگان امکان اندازه گیری دمای جنبشی (دمایی که توسط دماسنج اندازه گیری می‌شود) وجود ندارد. زیرا نمی‌توانیم ترمومتر را در قسمتهای مختلف ستاره قرار داده و این دما را اندازه گیری کنیم. از طرفی لایه‌های مختلف ستاره دارای دماهای مساوی هستند و هر چه از لایه‌های خارجی به طرف لایه‌های داخلی حرکت کنیم دما افزایش می‌یابد. بنابراین تعریف دمای منحصر به فردی که مربوط به هر لایه از ستاره باشد غیر ممکن است. 

اندازه گیری فراوانی عناصر در ستارگان

در حالت کلی مشاهده خطوط طیفی مربوط به یک عنصر در طیف یک ستاره دلیل بر وجود آن عنصر در اتمسفر این ستاره است و برعکس این ممکن نیست. یعنی عدم حضور خطوط طیفی یک عنصر در طیف یک ستاره دلالت بر عدم وجود آن عنصر در اتمسفر ستاره را ندارد، زیرا علاوه بر حضور یک عنصر لازم است، شرایط فیزیکی (دما و فشار) برای تشکیل خطوط طیفی آن عنصر برقرار باشد، تا بتوانیم خطوط طیفی آن عنصر را مشاهده کنیم. با توجه به اینکه شدت خطوط جذبی بستگی به فراوانی آن عنصر دارد، بنابراین می‌توانیم از روی شدت خطوط طیفی ، فراوانی عناصر را در ستارگان تعیین کنیم. 

جرم ستارگان

اطلاعات مربوط به جرم ستارگان از مسائل بسیار مهم به شمار می‌رود. تنها راهی که برای تخمین جرم یک ستاره در دست داریم آن است که حرکت جسم دیگری را که بر گرد آن دوران می‌کند مورد مطالعه قرار دهیم. ولی فاصله عظیمی که ما را از ستارگان جدا می‌کند، مانع آن است که بتوانیم سیارات متعلق به همه آنها را ببینیم و حرکت آنها را مورد مطالعه قرار دهیم. عده زیادی ستاره موجود است که جفت جفت زندگی می‌کنند و آنها را منظومه‌های مزدوج یا دو ستاره‌ای می‌نامند. در چنین حالات بایستی حرکت نسبی هر یک از دو ستاره مزدوج مستقیما مطالعه شود، تا از روی دوره گردش آنها جرم نسبی هر یک بدست آید. در حضور ارتباط میان جرم و نورانیت ستارگان ، نخستین بار بوسیله سرآرتورادینگتون اظهار شد که نورانیت ستاره‌ها تابع معینی از جرم آنها است، و این نورانیت با زیاد شدن جرم به سرعت ترقی می‌کند. 

منابع انرژی ستارگان

برای هر ستاره‌ای سه منبع انرژی را می‌توان نام برد که عبارتند از:
 

انرژی پتانسیل گرانشی

می‌توان فرض کرد که خورشید یا ستارگان در حال تراکم تدریجی هستند و بدین وسیله انرژی پتانسیل گرانشی خود را بصورت انرژی الکترومغناطیسی به محیط اطراف تابش می‌کنند. 

انرژی حرارتی

می‌توان فرض کرد که ستارگان و خورشید اجرام بسیار داغ آفریده شده‌اند و با تابش خود به محیط اطراف در حال سرد شدن هستند. 

انرژی هسته‌ای

می توان فرض کرد که در ستارگان هسته‌های سبکتر همجوشی کرده و انرژی آزاد شده در این همجوشی منبع انرژی ستارگان را تأمین می‌کند، یا می‌توان فرض کرد که در ستارگان هسته‌های سنگینتر از طریق واپاشی به هسته‌های سبکتر تبدیل شده و انرژی آزاد شده از این واپاشیها انرژی ستارگان را تأمین می‌کند. 
 

img/daneshnameh_up/c/c1/C3-21-A095.jpg

 

مرگ ستارگان

سه طریق برای مرگ ستارگان وجود دارد. ستارگانی که جرم آنها کمتر از 1.4 برابر جرم خورشید است. این ستارگان در نهایت به کوتوله‌های سفید تبدیل می‌شوند. ستارگانی که جرم آنها بیشتر از 1.4 برابر جرم خورشید است، در نهایت به ستارگان نوترونی و به سیاه چاله‌ها تبدیل خواهند شد. دیر یا زود سوخت هسته ای ستارگان به پایان رسیده و در این صورت ستاره با تراکم خود انرژی گرانشی غالب آمده و این تراکم (رمبش) تا تبدیل شدن الکترونهای آزاد ستاره به الکترونهای دژنره ادامه پیدا می‌کند، که در این صورت ستاره به یک ستاره کوتوله سفید تبدیل شده است. برخی از ستارگان از طریق انفجارهای ابرنواختری به ستارگان نوترونی تبدیل می‌شوند. ستارگانی که بیشتر از 1.4 و کمتر از سه برابر جرم خورشید دارند، به ستاره نوترونی تبدیل شده و آنهایی بیشتر از سه برابر جرم خورشید دارند، عاقبت به سیاه چاله تبدیل می‌شوند. سیاه چاله آخرین مرحله مرگ ستاره می‌باشد. 



 

مفاهیم اولیه

شهابواره‌ها اجرامی هستند که در فضای بین سیاره‌ای در حال گردشند و ممکن است با زمین برخورد کنند. هنگامیکه با سرعت 1170 کیلومتر در ساعت وارد بخش بالایی اتمسفر می‌شوند، تبدیل به شهاب می‌شوند و در ارتفاع بین 110 و 70 کلیومتری دنباله‌ای نورانی از خود باقی می گذارند. وقتی این اجرام به زمین می رسند ، شهاب سنگ نامیده می شوند. مطالعه این شهاب سنگها اطلا عات ارزشمندی درباره نحوه تشکیل آنها ، مواد تشکیل دهنده و تاریخ جهان در اختیار دانشمندان قرار می دهد. چون شهابها احتمالا بقایای فعالیتهایی هستند که در ابتدا جهان ما را شکل بخشید. 

ساختمان شهاب سنگها

علوم اختر شناسی ، زیست شیمی و زمین شناسی به مطالعه شهاب سنگها می‌پردازند. مطالعات نشان می‌دهد که شهاب سنگها انواع مختلف دارند:
 

  • نوع سنگی که شامل سیلیکاتها می‌باشد.
  • نوع فلزی که از آهن و نیکل تشکیل شده است.
  • نوع سنگی - فلزی که مخلوطی از سنگ و فلز است.


 

img/daneshnameh_up/7/76/HD_209458_art_260.jpg





بیشتر سنگهای فوق کندریتها هستند ، که دارای کندرول می‌باشند و گویچه‌هایی با چند میلیمتر قطر ، که منشأ معدنی آنها معلوم نیست و در بردارنده دانه‌های اولیوین و پیروکسین هستند. کندریتها طبق میزان تغییرات آب و تغییرات دمایشان پیش از رسیدن به زمین تقسیم بندی می‌شوند. کندریتهای کربن دار از نظر زیست اختر شناسان بیشترین اهمیت را دارند. در این کندریتها کربن یافت می‌شود که ترکیب آن سومین مشخصه کندریتهاست.

این نوع کندریتها حدود 5 درصد شهاب سنگها را تشکیل می‌دهند. در قرن نوزدهم مطالعات سنگهای حامل کندریتهای کربن دار نشان داد که دارای هیدروکربنهایی هستند، شبیه هیدروکربنهای کروجنkerogen ، که ماده جامدی است که در منابع نفت نظیر سنگ نفت یافت می‌شود. بین سالهای 1950 و 1970 ، «هارولد اوری» ، برنده جایزه نوبل شیمی ، یک رشته تجزیه‌های شیمیایی و ایزوتوپی انجام داد که وجود ترکیبات بودار را که قطعا منشأ فرازمینی دارند، تأیید کرد. 

نحوه تشکیل شهاب سنگها

اغلب شهاب سنگها از سیارکها ناشی می شوند (که بعضی از آنها ممکن است به قطر صد تا چهار صد کیلومتر رسیده باشند) که بعدا خرد شده و یا در اثر برخورد با اجرام دیگر قسمتی از آنها سائیده شده باشد. مثلا شهاب سنگ واکاموارتا در اثر برخورد سیاره‌ای کوچک که بخشی از آن مذاب بوده و فعالیتهای آتشفشانی داشته است و سیاره کوچک دیگری با هسته فلزی بوجود آمده است. در نهایت خرده پاره‌های هر دو سرد شده و بصورت مخلوطی از مواد معدنی در آمده است که نیم آن سنگی و نیمی فلزی است. این نوع کمیاب «مزوسیدریت» نامیده می‌شود. 

اسید آمینه در شهاب سنگها

«جان کرونین» ، پژوهشگر دانشگاه آریزونا ، با مطالعه شهاب سنگ مارکیسون که در سال 1969 در استرالیا سقوط کرد، به این نتیجه رسید که در ساختمان آن اسیدهای آمینه وجود دارد. در ساختمان شهاب سنگها اشکال گوناگونی از کربن نظیر گرافیت ، سیلیکان کارباید و الماس یافت شد. کرونین 74 نوع اسید آمینه مختلف ، 87 هیدروکربن بودار ، 140 ترکیب چربی دار ، 10 مولکول قطبی و از همه مهمتر 5 پایه نیتروژنی که درDNA وRNA یافت می شود، در شهاب سنگها کشف کرده است.

از بیست نوع اسید آمینه یافت شده ، هشت مورد از آنها در ساخت پروتئین در حیات زمینی دخیل هستند، نظیر گلیسرین ، آلانین ، والین و لوسین. کرونین مواد اولیه این اسید آمینه‌ها را نیز یافته است که موادی چون کربوکسامیدها هستند. به گفته او با اندکی تلاش می‌توان از مولکولهای بین ستاره‌ای اسید آمینه بدست آورد و مواد اولیه بین ستاره‌ای آنهاست که برای ساختن ترکیبات آلی یافت شده در شهاب سنگها لازم می‌باشد. 

مواد بین ستاره‌ای در شهاب سنگها

جدول زیر نشان دهنده مواد اولیه بین ستاره‌ای (ترکیبات یافت شده در شهاب سنگها) و پلیمر های بیولوژیکی که مبنای حیات را تشکیل می‌دهند، است:
 

پلیمرهای بیولوژیکی آیا در شهاب سنگها یافت می‌شوند؟ مواد اولیه تشکیل دهنده حیات مواد اولیه  
پروتئین بلی اسیدهای آمینه RCHO , HCN , NH3 , H2O  
اسید نوکلئیکها بلی پیورین‌ها HCN , H2O  
اسید نوکلئیکها بلی پیریمیدینها HCN , H2O , CHCCN  
اسید نوکلئیکها خیر ریبوزها H2CO  
غشاها (پوسته‌ها) بلی فسفاتها PN.CP  
غشاها(پوسته‌ها) بلی اسیدهای چرب پلیینها و مولکولهای چند حلقه‌ای بودار PAH (Polycyclic aromatic hydrocarbons)

 

اندازه شهاب سنگها

بر طبق برآوردهای اخیر ، هر روز 10،000 تن شهاب سنگ به زمین می‌رسد. بیشتر این جرمها فوق العاده ریزند، بطوری که جو زمین به هنگام عبورشان هیچگونه تأثیر خاصی بر آنها نمی‌گذارند. این ذرات احتمالاً دست نخورده به زمین می‌رسند. حداکثر بعد آنها یک صدم سانتیمتر است. با ماهواره‌های مخصوص می‌توان این ذرات را ، به هنگام عبور از فضا ، جمع آوری کرد. این ذرات کوچک و تقریباً غیر قابل ادراک را شهاب سنگهای کوچک یا شهاب سنگهای ریز می‌نامند. 

 

عکس پیدا نشد





پس از آنها به شهاب سنگهایی بر می‌خوریم که حداکثر بعد آنها یک سانتیمتر است. ذراتی که هنگام عبور از جو زمین ، روشنایی ایجاد می‌کنند، از همین نوع شهاب سنگها هستند. شهاب سنگهای بزرگتر به ندرت وارد جو زمین می‌شوند، اما در صورت ورود به جو زمین ، خطوط نورانی‌تری تولید می‌کنند. همینطور که اثرهای نوری چشمگیرتر می‌شوند، اثرهای صوتی نیز رفته رفته به وقوع می‌پیوندد. شهابسنگهای به وزن 4.5 کیلوگرم یا بیشتر در ضمن عبور از جو ، کاملاً از هم نمی‌پاشند و قطعه‌های کوجک ولی قابل شناخت آنها به سطح زمین می‌رسند.

اثرهای نوری و صوتی این قبیل شهاب سنگها از تولید ترس خفیف همراه با از جا پریدن تا وحشت شدید متفاوتند. گذار شهابسنگهای بزرگ در زیر خط پرواز آنها ممکن است یک آتشگوی فرا درخشان و موجهای ضربه‌ای شدید بوجود آورد. دیده شده است که شهاب سنگهای برنده سریع السیر ، چون تبر شاخه‌های درختان را قطع می‌کنند. شهاب سنگها ، سطحهای سختی چون پشت بامها را بدون ایجاد ترک بوضوح سوراخ کرده‌اند و از لایه‌های یخ استخرها و دریاها و سقفهای فلزی اتومبیل گذشته‌اند. 



 

مقدمه

تماشاگران آسمان در قدیم فقط پنج ستاره را می شناختند و تنها پس از کشف تصادفی سیاره اورانوس توسط هرشل در سال 1781 میلادی بود که ستاره شناسان جستجوی سیارات دیگر را آغاز کردند. با این حال اولین سیارک کشف تلسکوپی دیگری بود که بطور اتفاقی در اول ژانویه 1801 توسط جوزیه پیاتسی(1826-1746) انجام شد. این سیارک ، که نوع آنها را گاهی سیاره وچک نیز می‌نامند، در همان موقع سرس نامگذاری شد. اندکی بعد سیارکهای بیشتری کشف شدند، ولی معلوم شد که سرس با قطر 995 کیلومتر (592 مایل) بزرگترن آنهاست. در مواقع معینی با آگاهی از مکان دقیق سرس ، این سیارک را می‌توان بدون تلسکوپ بصورت گذرا رؤیت کرد. 



img/daneshnameh_up/1/19/ceres1.jpg


سیارکهای شناخته شده

تا کنون هزاران سیارک شناخته و نامگذاری شده‌اند. اکثر آنها بر روی کمربندی که کمربند یا منطقه سیارکها نامیده می‌شود به دور خورشید در گردش هستند. این کمربند بین مریخ و مشتری قرار دارد. با وجود این برخی از سیارکهای کوچک به قطر یک کیلومتر (یک مایل) و یا در این حدود ، دارای مدارهایی با خروج از مرکز بزرگ هستند. سیارکهای دارای این نوع مدار به داخل مدار مریخ نیز کشانده می‌شوند. برخی از سیارکها حتی به داخل مدارهای زمین ، زهره و عطارد نیز نفوذ می‌کنند. یکی از این سیارکها ایکاروس نام دارد. این نام از یک شخصیت افسانه‌ای یونان گرفته شده است. این فرد به نزدیک خورشید پرواز کرد و در نتیجه بالهای مصنوعی‌اش ذوب گردید. 

بزرگترین سیارک منظومه شمسی

بزرگترین سیارک منظومه شمسی سرس با قطر حدود 960 کیلومتر است. این اولین سیارکی بود که در منظومه شمسیکشف شد . سرس در حال حاضر از قدر 9 در صورت فلکی میزان قرار دارد. برای پیدا کردن آن ستاره قدر چهارم گاما – میزان را در آسمان پیدا کنید. از آن به سمت جنوب حرکت کنید تا به ستاره سه تایی زتا – میزان برسید و به اندازه نصف این فاصله ادامه دهید تا به سیارک سرس برسید.

در ناحیه‌ای از آسمان که سرس قرار دارد ستاره دیگری جلب توجه نمی‌کند و می‌توان آن را با یک نگاه تیز تشخیص داد. با مشاهده آن در روزهای متوالی می‌توانید متوجه حرکت آن در زمینه آسمان شوید. برای اینکه مطمئن شوید می‌توانید از سرس و ستارگان اطراف طراحی کنید و چند روز بعد همین کار را انجام دهید و طراحیهای خود را باهم مقایسه کنید. وستا درخشانترین سیارک منظومه شمسی است. این سیارک چهارمین سیارکی بود که کشف شد. اولبرس در سال 1807 میلادی این سیارک درخشان را کشف کرد. جالب آنکه در حالت مقابله امکان مشاهده وستا با چشم غیر مسلح وجود دارد. قطر آن 530 کیلومتر است. 

سیارکهای برخوردی با زمین

در گذشته سیارکهای کوچکی با زمین برخورد کرده‌اند. حفره شهابسنگی بزرگ در آریزونا در اثر چنین برخوردی ایجاد شده است. تخمین زده می شود که حدود 50000 سیارک در اطراف خورشید در گردشند. بیشتر این سیارکها تکه سنگهای کوچک هستند. بعضی از آنها شکل نامنظمی دارند و حداقل یکی از آنها به نام کتور به صورت یک شی دوقلو است (ستاره دوتایی). اطلاعات بیشتر درباره سیارکها از مأموریتهای فضایی آینده بدست خواهد آمد. 

هایابوسا و ارمغانی از سرزمین سیارکها

در فاصله 3/1 واحد نجومی از زمین سیارکی قرار دارد که اکنون کانون توجه جامعه علمی است. این سیارک ایتوکاوا نام دارد و میزبان فضاپیمای ژاپنی هایابوسا بوده است. به جرأت می‌توان گفت که پروژه هایابوسا یکی از مهمترین برنامه‌های فضایی است که در صورت موفقیت می‌تواند مقداری از مواد سطح سیارک ایتوکوا (25143) را در اختیار دانشمندان قرار دهد. فضاپیمای مزبور در تاریخ 19 اردیبهشت 1382 به فضا پرتاب شد و اکنون در نزدیکی سیارک ایتوکاواست.

25 نوامبر 2005 - ساعت 7:30 دقیقه بامداد به وقت ژاپن فضاپیمای هایابوسا برای مدت کوتاهی با سیارک فوق از نزدیک ملاقات کرد. این فضاپیما توانست با نهایت دقت در محلی که از قبل پیش بینی شده بود (دریای موسس) خود را با سطح سیارک مماس کند، موقعی که هایابوسا به فاصله جند متری از سطح سیارک رسید گوی فلزی تانتالیوم 5 گرمی خود را به سطح سیارک با سرعت 300 متر بر ثانیه شلیک کرد. در کسری از ثانیه (0.2) گلوله با سطح برخورد کرده و به دنبال آن مقدار قابل توجهی گرد و غبار به محیط اطراف پراکنده شد. بخشی از این مواد توسط سیستم جمع آوری تمام خود کار هایابوسا جمع آوری و وارد محفظه اصلی آن گردید.

یوشیرو کاواگوچی یکی از مسئولین عالی رتبه سازمان 
کاوشهای فضایی ژاپن ( JAXA) اعلام داشت که با وجود مشکلاتی که در حین مأموریت بوجود آمد و علی‌رغم قطع ارتباط فضاپیما ، عملیات نمونه برداری از سیارک به خوبی صورت گرفته است و ذرات برداشته شده از سیارک در نهایت امنیت قرار دارد. اکنون هایابوسا آماده بازگشت به زمین است و تمامی مواد جمع آوری شده به کپسول اصلی آن الحاق پیدا کرده ، به گفته مسئولین JAXA قرار است در ماه دسامبر و یا در ماه ژوئن 2007 این کپسول به زمین برسد و این کپسول نمونه‌ها در منطقه دور افتاده در حوالی جنوب استرالیا با کمک چتر نجات بر سطح زمین فرود آید. 



 

ستاره های دنباله دار

ستاره های دنباله دار

دنباله‌دار faye را می‌توانید در سال 2006 در آسمان ببینید.

 

 

ستارگان دنباله‌دار بر خلاف اسمشان به هیچ وجه ستاره و منبع تولید انرژی نیستند و نامگذاریشان فقط به دلیل شکل ظاهریشان است که مثل ستاره‌ای هستند که دنباله‌ای داشته باشد، به طوری که واژه comet از کلمه یونانی kometes به معنی مو و سر گرفته شده است.

این ستارگان جابجا شونده با وجود چهره تماشاییشان که به سرعت تغییر می‌کند و کاملاً غیرمتناوب و نامنظم به نظر می‌رسد، نشانی از ترس و خرافات بوده اند و مردم ظهور ستارگان دنباله‌دار را علامتی از اتفاقی بزرگ و ناخوشایند می‌دانستند.

دنباله‌دارها از جمله اجرامى هستند که در طول تاریخ چندان محبوب نبوده‌اند. در واقع در فرهنگ بسیارى از ملت‌ها آن را پدیده‌اى شوم و نفرت‌انگیز مى‌دانستند: اعتقادى که هنوز هم طرفدارانى دارد. به نظر بسیارى از منجمان آماتور «دنباله‌دارها خیلى زیبا هستند. آنها فقط مدت کمى میهمان آسمانند با این حال، دیدن آنها بسیار هیجان انگیز است.» اما نظر شکسپیر در مورد آنها چندان شبیه این گفته‌ها نیست: «دنباله‌دار خبر از تغییر ایام و دولت‌ها مى‌دهد.» تا مدت‌ها دنباله‌دارها پیام‌هایى از سوى خدایان به حساب مى‌آمدند. پیام‌هایى که حاوى خشم و غضب آنان بر زمینیان گناهکار بود. به هر روى ظهور دنباله‌دارها در طول تاریخ تاثیرى شگرف بر زندگى آدمیان داشته؛ کودکانى را قربانى کرده و باعث برافتادن حکومت‌ها شده است. کم کم این پیام‌هاى غضبناک آسمانى جاى خود را به عقاید جدیدتر دادند. نظراتى مبنى بر اینکه دنباله‌دارها پدیده هایى مربوط به جو هستند و در داخل اتمسفر زمین ایجاد مى‌شوند. آنها عجیب‌تر از رعد و برق و توفان‌ها به نظر مى‌رسیدند و به همان میزان ـ و بلکه بیشتر- ترسناک و مخاطره‌آمیز بودند.

سال‌ها طول کشید تا سرانجام در قرن هفدهم تلاش‌هاى ادموند هالى نشان داد دنباله‌دارها اجرامى سماوى‌اند. اگرچه آنها با سیارات و ستارگان بسیار متفاوت هستند، اما همچون سیارات در مدارهایى به دور خورشید مى‌گردند. مدارهایى که معمولاً بیضوى، سهموى یا هذلولى هستند. این نوع مدار باعث مى‌شود تا فاصله دنباله‌دار از خورشید در نقطه اوج مدارى‌اش بسیار دور شود.

کشف دنباله‌دارها تاثیر بسیار زیادى بر روى علوم مختلف و به خصوص ستاره‌شناسى گذاشت. محاسبه دقیق مدار دنباله‌دارها بهانه‌اى مناسب براى کشف روش‌هاى نوین ریاضى بود. همچنین به بهانه یافتن دنباله‌دارهاى جدید نقشه‌هاى دقیقى از آسمان تهیه شد. فهرست اجرام غیرستاره‌اى که مشهورترین آنها مسیه نام دارد و متعلق به ستاره‌شناسى فرانسوى است نیز به سبب اشتباه نگرفتن این اجرام با دنباله‌دارهاى تازه پدید آمده است. کشف سیارات جدید نیز از الطاف حاشیه‌اى دنباله‌دارها است. «هرشل» تا مدت‌ها سیاره اورانوس (نخستین سیاره در دوران جدید) را دنباله‌دارى نوظهور فرض مى‌کرد.

به هر جهت، دنباله‌دارها برخلاف تاثیرى که از لحاظ خرافات بر روى زندگى زمینیان گذاشتند، عامل تحولى شگرف در علم نوین بوده‌اند. کشف دنباله‌دار اما کار ساده‌اى نبوده است. در دوران جدید براى یافتن یک دنباله دار، باید رصدگر بسیار ماهرى باشید، تمامى آسمان را به خوبى بشناسید و کمترین تغییرى را نادیده نگیرید. دیدن یک جرم بسیار کم نور و شبح‌گون در میان خیل عظیم ستارگان آسمان کار راحتى نیست. اما داستان کشف دنباله‌دارها به پایان نرسیده است. اگر رصدگر دقیقى باشید، این احتمال وجود دارد که شما هم روزى موفق به کشف یک دنباله‌دار شوید.

 

دنباله‌دار چیست ؟

 

دنباله‌دارها کره‌هایی از گاز و غبار هستند. هنگامی که این کره‌ی منجمد به خورشید نزدیک می‌شود، در اثر تصعید گازها و غبارها، هاله‌ای مه آلود در اطراف جسم اصلی دنباله‌دار (هسته) و دمی بلند در اطراف آن تشکیل می‌دهند.

 

معمولاً هر دنباله‌دار از سه بخش تشکیل شده است:

  1. هسته : با قطر چند کیلومتر (که به طور مستقیم قابل مشاهده نیست) و کره‌ای از یخ و گازهای منجمد است.
  2. گیسو : یک توده کروی از گاز است که هسته دنباله‌دار را احاطه می‌کند و حدود یک میلیون کیلومتر طول دارد. گیسو از بخار آب،‌گاز دی اکسیدکربن، آمونیاک، غبار و گازهای طبیعی دیگر که از هسته جامد متصاعد شده، تشکیل شده است. گیسو و هسته سر یک دنباله‌دار را تشکیل می‌دهند.
  3. دنباله : برای یک دنباله‌دار دو نوع دنباله تشخیص داده شده است :
    • دنباله گرد و غبار که در انعکاس نور خورشید، زرد کمرنگ دیده می‌شود و همان طیف خورشید را دارد.
    •  دنباله پلاسما یا گازی، که به دلیل وجود مونوکسید کربن یونیزه (co+) آبی دیده می‌شود. طول دنباله ممکن است به صدها میلیون کیلومتر برسد.
       

در انیمیشن زیر می‌توانید ببنید که وقتی که دنباله‌دار به خورشید نزدیک می‌شود یخ‌های آن شروع به تصعید شدن می‌کنند و همین باعث می‌شود که دمی بلند در اطراف دنباله‌دار تشکیل شود.

 

 

مدار دنباله‌دارها

 

در قرن هفدهم، با کارهای اساسی کپلر، نیوتون و هالی مشخص شد که حرکت‌های عجیب دنباله‌دارها از همان قوانین حرکت سیارات پیروی می‌کنند. هالی با ادامه‌ی کار موفق شد دوره‌ی تناوب و مدار دنباله‌دار درخشانی را که بعدها به نام خودش معروف شد تعیین کند و مشخص شد که این همان دنباله‌داری است که از سال‌ها قبل از میلاد به طور تقریباً منظمی با دوره‌ی تناوب ۷۶سال رصد می‌شده است.

مدار بیشتر دنباله‌دارها بیضی بسیار کشیده (با خروج از مرکز بیشتر از ۰/۹) است. مدار بعضی دیگر سهموی و یا هذلولی است که دنباله‌دارهای غیرمتناوب محسوب می‌شوند. گاهی از اوقات ممکن است مدار دنباله‌دار به دلیل گرانش سیارات بزرگی مثل مشتری تغییر کند. مثلاً گرانش شدید موجب تکه تکه شدن دنباله‌دار شود. (مثل دنباله دار شومیکرـ لوی ۹) در سال ۱۵۳۸ میلادی یک پزشک به نام Jerome Frascator متوجه شد که دنباله‌ی دنباله‌دارها در خلاف جهت خورشید قرار دارد. در قرن هفدهم کپلر علت آن را فشار باد خورشیدی مطرح کرد.

دنباله‌دار فقط وقتی که به خورشید نزدیک است روشن می‌شود (به حالت بخار در می‌آید) و در دورترین نقطه مدار تاریک است (کاملاً غیرقابل رؤیت). بادهای خورشیدی دنباله را به سمت دورتر از خورشید می‌رانند.

بعضی دنباله‌دارها یا به خورشید برخورد می‌کنند و یا چنان نزدیک می‌شوند که منفجر می‌شوند این دنباله‌دارها خورشید خراش (Sungrazers) نامیده می‌شوند.

در انیمیشن زیر می‌توانید مدار یک دنباله‌دار را ببنید.

 

 

منشأ دنباله‌دارها کجاست ؟

 

 در سال ۱۹۵۰ یک اخترشناس هلندی به نام یان اورت با مطالعه‌ی آماری چهل و شش دنباله‌دار بلند دوره (با دوره تناوب بیش از ۲۰۰ سال) متوجه شد که این دنباله‌دارها از تمام جهات به سوی خورشید می‌آیند، بنابر این منبعشان باید کره‌ای پیرامون خورشید باشد و از آنجایی که مدار این دنباله‌دارها بسیار کشیده است پس این کره می‌بایست دور باشد. او این موضوع را مطرح کرد که خرده سیارات باقیمانده از سحابی اولیه منظومه شمسی منشا دنباله‌دارها است. با محاسبات انجام شده این منطقه (که امروزه اَبر اورت نامیده می‌شود) باید در فاصله۲۰۰۰۰ تا۱۰۰۰۰۰ واحد نجومی باشد. شاید تعداد دنباله‌دارهای ابر اورت به دو تریلیون برسد.

اما دنباله‌دارهای کوتاه دوره، تقریباً در صفحه‌ی منظومه‌ی شمسی حرکت می‌کنند. پس منبع آنها نمی‌تواند ابر اورت باشد. اخترشناسان منبع آنها را قرصی مسطح در ورای مدار نپتون (۳۵ تا۴۰ واحد نجومی) می‌دانند که ممکن است تا فاصله ۱۰۰ واحد نجومی گسترده شده باشد. جمعیت این کمربند چند صد میلیون تخمین زده می‌شود. حدود ده سال پیش (۱۹۹۲ میلادی) دو اخترشناس سیاره‌ای از دانشگاه هاروارد موفق به کشف ۲۰ عضو از اجرام این کمربند (کمربند کویی پر) شدند.

 

چرا دنباله دارها مهم هستند؟

 

چندى پیش ناسا در ماموریتى چندصد میلیون دلارى فضاپیمایى را به سوى دنباله‌دارى فرستاد. این فضاپیما که «برخورد عمیق» (Deep Impact) نام داشت، اطلاعات متحیرکننده‌اى براى زمین مخابره کرد. اما اطلاعاتى که ما در دنباله‌دارها مى‌یابیم چیست: شاید مهمترین آنها تاریخچه جایى است که در آن زندگى مى‌کنیم. دنباله‌دارها از ابتداى منظومه شمسى تا به حال دست نخورده و یخ زده باقى مانده‌اند. ما در زمین و سیارات اطرافمان به دلیل وجود فرسایش زیاد، کمتر اثرى از دوران اولیه منظومه شمسى مى‌یابیم. دنباله‌دارها اما همچون مومیایى این آثار را در خود حفظ کرده‌اند. با مطالعه دقیق آنها مى‌توان به عناصر و شرایط آن هنگام دست یافت. بر پایه برخى نظریه‌هاى معتبر ممکن است عناصر تشکیل دهنده حیات توسط دنباله‌دارها به زمین آورده شده باشد.

براى آماتورها هم دنباله‌دارها سرشار از اطلاعات ارزشمند است. آنها امیدوارند قبل از ظهور و نورانى شدن یک دنباله‌دار ویژگى‌هاى آن را پیش‌بینى کنند. اینکه چه شکلى دارد، درخشندگى آن چه اندازه است، آیا دنباله دارد و این دنباله تا چه اندازه امتداد مى‌یابد. دنباله‌دارهایى که در نهایت به درون خورشید مى‌افتند نیز مهم هستند؛ خورشیدخراش‌ها مى‌توانند اطلاعات ارزشمندى در مورد جو خورشید در اختیارمان قرار دهند. مطالعه واکنش خورشید در این برخوردها نیز بسیار جذاب است.

 

دنباله‌دار هالی :

 

دنباله‌دار هالی یک دنباله‌دار دوره‌ای ، متشکل از گاز منجمد و غبار است، که به دور خورشید می‌گردد. هالی برای اولین بار در 240 قبل از میلاد در چین ثبت شد. اما ادموند هالی اولین کسی بود که دوره‌ای بودن آن را تشخیص داد. آخرین بار در 1986 دیده شد و بار دیگر در 2061 مشاهده خواهد شد. از آن جایی که دنباله‌دار هالی تحت تاثیر نیروی گرانشی سیارات برجیس و کیوان قرار دارد، لذا دوره گردش آن دقیقاً ثابت نیست و بین 74 تا 78 سال به درازا می‌کشد. اما تقریباً می‌توان آن را 76 سال دانست. وقتی که زمین از مدار هالی (هر سال دوبار) می‌گذرد. رگبار شهاب اتا اکواریدس و اریونیدس اتفاق می‌افتد.

دنباله‌دار هالی را می‌توانید در سال 2061 میلادی دوباره در آسمان ببینید.

 

 

 

دنباله‌دار شومیکرلوی 9 (SHOEMAKER-LEVY9) :

شومیکرلوی 9 (SL-9) یک دنباله‌دار با دوره تناوب کوتاه است که توسط زوج کارولین شومیکر و دیوید لوی کشف شد. وقتی دنباله‌دار به مشتری بسیار نزدیک شد نیروهای جاذبه‌ای مشتری بخشی از آن را از آن جدا کردند و قطعات جدا شده آن در طی 6 روز در ماه جولای 1994 به مشتری اصابت کردند که اشتعال بزرگ اتمسفر مشتری از زمین دیده می‌شد.



دو شنبه 13 خرداد 1392برچسب:, :: 15:4 ::  نويسنده : amirreza ghorbani

 

* زندگی فرازمینی 

 تلسکوپ کک هاوایی در نهایت توانست از میان دریایی از اجرام شناور در فضا همزادی برای سیاره زمین بیابد، سیاره ای که می تواند بستری مناسب برای شکل گیری حیات باشد. اخترشناسان موفق به کشف سیاره ای شبه زمینی با ابعادی برابر ابعاد زمین در منطقه ای قابل سکونت از فضا شده اند که احتمال وجود آب مایع در آن وجود داشته و می توان به عنوان جهانی قابل سکونت بر روی آن مطالعه کرد.

گروهی از شکارچیان سیاره ای در دانشگاه کالیفرنیا، این جهان ناشناخته را در مدار جرم کوتوله سرخی به نام گیلیس 581 در فاصله 20 سال نوری از زمین یافته اند. سیاره در منطقه امن یا قابل سکونت فضای موجود در اطراف ستاره ای قرار گرفته که حرارت آن برای شکل گیری آب مایع نه چندان داغ و نه چندان سرد است. 

به گفته استیون ووت یکی از اخترشناسان تیم یابنده، این یافته گزینه ای بسیار قابل قبول و قابل توجه از سیاره های قابل سکونت به شمار می رود و سرعت بالای دانشمندان در ردیابی و مشاهده آن در نزدیکی زمین نشان می دهد سیاره های اینچنینی در اطراف زمین فراوانند.

این یافته ها تایید می کنند سیاره جدید در میان سیاره های شبه زمینی که تا به حال در میان سامانه های ستاره ای دیگر کشف شده بیشترین شباهت را به زمین داشته و در میان گزینه های موجود برترین گزینه در میان مناطق قابل سکونت به شمار می رود.

تا کنون بیش از 400 سیاره فراخورشیدی توسط اخترشناسان کشف شده است که بیشتر آنها توده های عظیم گازی مشابه مشتری هستند که همانطور که می دانید برای شکل گیری حیات بستری مناسب به حساب نمی آیند. اخترشناسان برای مطالعه بر روی حرکات گیلیس 581 در بیشترین جزئیات ممکن از تلسکوپ کک در هاوایی استفاده کردند و با استفاده از اطلاعات فروسرخ به دست آمده از رصدهای این تلسکوپ توانستند حضور تعدادی سیاره در مدار این جرم کیهانی را مشاهده کنند.

یکی از این سیاره ها گیلیس 581g   نام داشته و جرم آن سه یا چهار برابر زمین بوده مدار کامل ستاره اش را 34 روزه طی می کند. اخترشناسان بر این باورند این سیاره سنگی به اندازه ای نیروی گرانش دارد که زمینه شکل گیری اتمسفر در آن وجود داشته باشد.

گیلیس 581g   برخلاف دیگر سیاره های کشف شده در منطقه ای از فضا قرار گرفته که امکان شکل گیری حیات در آن وجود دارد. یک سوی این سیاره مانند ماه زمین که همیشه یک سوی آن رو به زمین دارد، رو به سوی ستاره خود دارد، این به آن معنی است که سوی دیگر سیاره همیشه در تاریکی است و از این رو قابل سکونت ترین منطقه در این سیاره مرز میان تاریکی و روشنایی آن خواهد بود. میانگین حرارت بر روی سیاره جدید در حدود منفی 31 تا منفی 12 درجه سلسیوس تخمین زده شده است اما حرارت سطح آن می تواند در بخشهای تاریک به حد انجماد و در بخشهای روشن به شدت داغ باشد.

پخش برنامه های تلویزیونی 20 سال پیش زمین در تلویزیونهای فضاییها!

اخترشناسان می گویند سیاره سنگی شبه زمینی که به تازگی کشف شده از ظرفیت وجود حیات هوشمند برخوردار است و این فرصت مناسبی برای زمینیان است تا برخی از برنامه های تلویزیونی متعلق به دو دهه پیش خود را برای همتاهای بیگانه خود ارسال کنند. در صورتی که حیاتی در این سیاره که در فاصله 20 سال نوری از زمین قرار گرفته وجود داشته باشد احتمالا اکنون ساکنان این سیاره در حال تماشای برنامه های تلویزیونی و شنیدن برنامه های رادیویی هستند که 20 سال پیش بر روی زمین تولید شده اند.

سیاره گیلیس 581g   اولین جهان شبه زمینی در منطقه قابل سکونت از جهان است، منطقه ای که حرارت سیاره ها امکان شکل گیری آب مایع را بر روی سطح سیاره به وجود خواهد آورد و کاشفان این سیاره اطمینان دارند می توان بر روی آن گونه ای از حیات را کشف کرد.

به گفته استیون ووگ اخترشناس و فیزیک اخترشناس دانشگاه کالیفرنیا با در نظر گرفتن میل طبیعی حیات برای فراگیر بودن و نمو کردن در هرجایی می توان 100 درصد اطمینان داشت که بر روی این سیاره حیات وجود دارد. وی می گوید تقریبا در این باره هیچ تردیدی ندارد.

از آنجایی که سیگنالهای رادیو و تلویزیون با سرعتی برابر سرعت نور حرکت می کنند، سیگنالهایی که انسانها 20 سال پیش منتشر کرده اند، اکنون به سیاره جدید خواهد رسید در حالی که تا کنون هیچ سیگنالی از این سیاره به زمین نرسیده است.

  "ست شوستاک" از پروژه بزرگ SETI   (جستجوی هوش فرازمینی) که در آن از بشقابهای بزرگ ماهواره ای برای تحت نظر گرفتن آسمانها استفاده می شود تا هر نوع مخابره از سوی حیاتهای بیگانه را ردیابی کند، می گوید تیمش هنوز موفق نشده اند سیگنال یا پیامی را از سیاره گیلیس 581g   دریافت کند.

بر اساس گزارش تلگراف، به گفته تیم SETI   با وجود اینکه موجودات ساکن این سیاره در حال دریافت بسیاری از برنامه های تلویزیونی دو دهه پیش زمین هستند، احتمالا به دلیل حساس نبودن کافی گیرنده هایشان توانایی دریافت کردن مقداری از سیگنالها را ندارند. به همین دلیل سیگنالها مختل شده و در فضا گم می شوند. از این رو برای درک هر نوع پیامی که شاید موجودات بیگانه برای زمینیان مخابره کنند باید ابزارهای عظیمتر ساخته شوند تا بتوان به جستجوی این نوسانات سیگنالی پرداخت. 

کشف معدنی از سیاره های شبه زمینی در جهان

دانشمندان می گویند در جهان معدنی عظیم از سیاره های شبه زمینی و بیگانه وجود دارد، به طوریکه از میان هر چهار ستاره شبه خورشیدی، یکی سیاره ای به اندازه زمین دارد که در مداری نزدیک به ستاره در حرکت است.

بر اساس این مطالعه جدید شاید سیاره هایی که ابعاد آنها در محدوده 5 تا 30 برابر زمین است به هیچ وجه در جهان کمیاب نباشند، فرضیه ای که می تواند با مدلهای پیشین سیاره ای به مقابله برخیزد. این یافته ها همچنین نشان می دهند سامانه های خورشیدی مشابه سامانه خورشیدی زمین به همراه سیاره های شبه زمینی نیز می توانند در جهان هستی پدیده های بسیار رایجی باشند.

اخترشناسان با استفاده از تلسکوپ قدرتمند کک در هاوایی به مدت پنج سال دو دسته ستاره ای به نامهایG   و K   را در فاصله 80 سال نوری از زمین مورد مطالعه قرار دادند. ستاره زمین مشهورترین و شناخته شده ترین نمونه از ستاره های زرد رنگ دسته G   است در حالیکه کوتوله های دسته K   ستاره های زرد-نارنجی و کوچکتری هستند به طور کلی در این مطالعه 5 ساله 166 نمونه از این ستاره ها مورد بررسی قرار گرفتند.

محققان کوچکترین تغییراتی که به واسطه حرکت سیاره هایی در ابعاد 3 تا هزار برابر زمین که در مداری نزدیک به ستاره، در سطح ستاره ها به وجود می آمد را بررسی کرده و تخمین زدند در حدود 1.6 درصد از ستاره های شبه خورشیدی در نمونه های انتخابی دارای سیاره هایی به اندازه سیاره مشتری هستند در حالیکه 12 درصد از این ستاره ها از سیاره هایی سه تا 10 برابر زمین برخوردار هستند.

این یافته نشان دهنده روند رو به رشد حضور سیاره های کوچکتر است و به این شکل سیاره هایی در ابعاد نپتون یا کوچکتر، نسبت به سیاره های عظیمی مانند ژوپیتر در سامانه های خورشیدی فراوانی بیشتری دارند.

برای قابل لمس تر شدن این موضوع اخترشناسان در دانشگاه کالیفرنیا برکلی اعلام کردند از میان 100 ستاره شبه خورشیدی، یک یا دو ستاره از سیاره هایی به اندازه مشتری برخوردارند، 6 ستاره سیاره های به اندازه نپتون دارند و 12 ستاره سیاره هایی در ابعاد سه تا 12 برابر زمین را در مدار خود حفظ کرده اند. همچنین در صورتی که سیاره های شبه زمینی با ابعادی نیم برابر یا دو برابر را مورد توجه قرار دهیم، برای هر 100 ستاره می توان 23 سیاره با ویژگی های گفته شده یافت.

به گفته اخترشناسان یافته جدید بر خلاف مدلهای رایج سیاره ای بوده و می تواند دیدگاه انسان را نسبت به چگونگی شکل گیری سیاره ها متحول کند.

بر اساس یافته های جدید اخترشناسان پیش بینی می کنند تلسکوپ کپلر ناسا که به منظور رصد 156 هزار جرم کم نور آغاز شده است، قادر خواهد بود 120 تا 260 جهان خاکی و شبه زمینی که در مدار 10 هزار ستاره دسته G  و K در گردش اند را رصد کند.

بر اساس گزارش ان بی سی، از سویی دیگر از آنجایی که اخترشناسان تنها قادرند سیاره هایی که در نزدیک ستاره های شبه خورشیدی در حرکتند را ردیابی کنند، احتمال وجود سیاره های شبه زمینی در فواصلی دور دست تر افزایش پیدا می کند، فواصلی که منطقه قابل سکونت، قلمروی در فاصله مشابه زمین از خورشید، نیز بخشی از آنها است.



 

مقدمه

نهمین سیاره منظومه شمسی ، پلوتون (سیاره تنها) در سال 1930میلادی توسط کلاید تامباو از طریق عکسبرداریهای متوالی کشف شد. مقایسه عکسهای یک ناحیه ثابت از آسمان در شبهای مختلف نشان می‌داد که این اجرام آسمانی طی یک فاصله زمانی معین ، نسبت به ستارگان زمینه تغییر مکان می‌دهد. از همین رو وجود آن به عنوان یک سیاره جدید ، تأیید شد. 

 

img/daneshnameh_up/2/29/C56_image001FFFF.jpg
New Horizons

 

آیا پلوتون سیاره است؟

رسما بله. وقتی پلوتون در سال 1930 میلادی کشف شد، اتحادیه بین المللی اخترشناسی ، آن را به عنوان "سیاره" شناسایی کرد. به رغم مباحثات اخیر ، این جرم آسمانی هنوز رسما در طبقه بندی جدیدی جای نگرفته است. معیارهای اساسی شناسایی یک سیاره را می‌توان به این شرح خلاصه کرد: هر جرم آسمانی که (مستقیما) گرد ستاره‌ای حرکت کند، ستاره یا شبه ستاره نباشد و آنقدر بزرگ باشد که گرانش خود آن ، موجب شود که شکل کروی داشته باشد، سیاره است. پلوتون هر سه شرط را برآورده می‌کند. اما برخی از دانشمندان معتقدند که پلوتون ممکن است یکی از بزرگترین سیارات کوتوله کمربند کوئیپر باشد. دلایل و مدارت قابل توجهی نیز در تأیید و تقویت این نظریه وجود دارد. 

منشأ پلوتون چیست و از کدام بخش از کیهان آمده است؟

نخست تصور می‌شد که پلوتون یکی از اقمار نپتون بوده است. اما وجود شباهتهایی میان ترکیبات و مدارهای پلوتون و یکی از اقمار نپتون ، موسوم به ترایتون ، دلالت بر این دارد که ممکن است هر دو آنها قبلا در مدارهای مستقلی گرد خورشید حرکت می‌کرده‌اند و بعدا سیاره نپتون ، تراتیون را به دام انداخته است. اما با اینکه مدار پلوتون ، مدار سیاره همسایه‌اش را قطع می‌کند، هرگز آنقدر به آن نزدیک نمی‌شود که تحت تأثیر نیروی گرانشی نپتون قرار گیرد و به دام بیفتد.

عده‌ای از اخترشناسان با توجه به شباهتهای موجود میان پلوتون و ترتیون با دیگر اجرام کمربند کوئیپر نتیجه می‌گیرند که هم قمر تراتیون و هم سیاره پلوتون حدود 4.5 میلیارد سال پیش ، از این کمربند به بیرون پرتاب شده‌اند. عده دیگر با توجه به مدار عجیب و مرکز گریز آن می‌گویند ممکن است پلوتون ابتدائا قمر یکی از سیارات منظومه شمسی (حتی زمین) بوده است که بعدا از آن گریخته است. 

مشخصات فیزیکی

طول هر شبانه روز پلوتون (زمانی که سیاره ، یک بار گرد محور خود می‌چرخد) معادل 153 ساعت زمینی است. روزهای این سیاره بسیار تاریک است. قمر آن ،شارون ، در سال 1987 بطور تصادفی در رصدخانه مونت پالومار کشف شد. شارون در مدار همزمانی توسط پلوتون به دام افتاده است و همواره در نقطه‌ای ثابت گرد آن می‌گردد. مدار پلوتون به دور خورشید، میل تندی دارد و فاصله متوسط آن از خورشید 5.915 میلیارد کیلومتر است که خورشید از آنجا فقط بصورت ستاره‌ای درخشان دیده می‌شود. پلوتون از سنگ و یخ تشکیل شده و اندازه‌اش کوچکتر از ماه زمین است. هنگام نزدیک شدن به خورشید جوی رقیق در اطراف آن تشکیل می‌شود که با دور شدن سیاره از خورشید یخ می‌بندد. مدار پلوتون بسیار طولانی بوده و بیشتر از سیارات دیگر نسبت به دایرة البروج انحراف دارد.

این سیاره هر 248.5 سال یک بار به دور خورشید می‌چرخد که در مدت 20 سال از این زمان فاصله‌اش نسبت به خورشید کمتر از فاصله نپتون از خورشید است. این مشخصات غیر عادی باعث شده تا بعضی ستاره شناسان ، پلوتون را نوعی سیارک بزرگ تصور کنند. پلوتون دورترین سیاره از خورشید بوده ، کمترین دما را در بین سیارات دارد. مدار بیضوی این سیاره که 248.5 سال زمینی طول می‌کشد، طولانی‌ترین مدار در منظومه شمسی است. پلوتون کوچکترین سیاره منظومه شمسی است و کمترین نیروی جاذبه را دارد.

به گفته یکی از اخترشناسان ، پلوتون تنهاترین و منزوی‌ترین سیاره منظومه شمسی است. اخترشناس دیگری پس از اینکه نخستین عکسهای تلسکوپ هابل را از نهمین سیاره منظومه شمسی مشاهده و بررسی کرد، گفت: "این سیاره‌ای شگفت است. اگر می‌توانستیم با فضاپیمایی به آنجا سفر کنیم، حقایق شگفت آور بیشتری را در مورد آن کشف می‌کردیم."

همانطور که دانشمندان سیاره نپتون را با توجه به آشفتگی و انحرافی که در مدار سیاره اورانوس گذاشته بود، کشف کردند، این بار نیز انحرافی در حرکات محاسبه شده نپتون ، دانشمندان را بدان وا داشت تا به جستجوی سیاره ای دیگر در دور دست بپردازند. از پیشگامان این کاوش می توان به پرسیوال لاول از فلگستاف آریزونا ، پیکرینگ و کلاید تامباو که دانشجوی دستیار رصد خانه فلگستاف بود اشاره کرد. مهمترین دلیل عدم موفقیت لاول و پیکرینگ در کشف سیاره نهم ، جستجوی سیاره‌ای گازی شکل و بزرگ بود. این جستجو بیش از بیست سال به طول انجامید و در نهایت کلاید تامباو با بررسیهای شبانه روزی بر روی هزاران عکس موجود ، موفق به کشف سیاره نهم شد. 

لحظه‌ای پس از کشف سیاره

تامباو پس از کشف سیاره نهم به طرف اتاق رئیس رفت، پیش از ورود کمی خود را مرتب کرد، در زد و وارد شد، سپس گفت قربان من سیاره نهم را پیدا کردم ... . اعلام کشف سیاره جدید در 13 مارس 1930 همزمان بود با روز تولد پرفسور لاول و سالگرد کشف اورانوس توسط ویلیام هرشل. نشانه این سیاره (PL (P,L حرف اول پرسیوال لاول است. برای سیاره جدید اسمهای مختلفی پیشنهاد شد که سرانجام به پیشنهاد دختری 11 ساله از انگلیس نام پلوتن (پلو تو)Pluto برایش انتخاب شد. از آن تاریخ به مدت 73سال (تا قبل از کشف سیاره 2003 ub 313) پلوتو به عنوان آخرین عضو از خاندان منظومه شمسی به حساب می‌آمد. عضوی که آرام و بی صدا به همراه سه قمر ش شارون ، p1 2005s و p2 2005s در کمر بند کویپر به دور خورشید در گردش است. هر چه قدر که ما از نور و گرمای هستی بخش خورشید بهره می‌گیریم، پلو تو از این نعمت محروم است. نور خورشید برای رسیدن به این سیاره باید فاصله‌ای حدود 6000000000 کیلومتری را طی کند. پس بدون شک خورشید از پلوتو همچون ستاره‌ای کوچک کم فروغ دیده می‌شود.
 

img/daneshnameh_up/e/ed/3EA_image002AAA.jpg img/daneshnameh_up/e/e8/2AZ_image003QQQ.jpg

 

پلوتون در زمینه ستارگان به صورت شی کوچکی دیده می‌شود که جایش را تغییر می‌دهد. (عکس از رصد خانه هیل)




از ویژگیهای پلوتو می‌توان به میل 17 درجه‌ای آن نسبت به دایرة البروج اشاره کرد، با در نظر گرفتن این موضوع که پلوتو در حضیض خورشیدی مدار نپتون را قطع می‌کند و سیاره هشتم به حساب می‌آید، این میل 17 درجه‌ای باعث عدم برخورد این دو سیاره (در فاصله400 میلیون کیلومتری) به یکدیگر می‌شود. البته رکورد میل یا انحراف نسبت به دایرة البروج در منظومه شمسی متعلق به سیاره 2003 ub 313 با انحراف 45 درجه‌ای است، که مانند یک نیمساز دایرة البروج را قطع می‌کند. (همین امر یکی از مهمترین دلایلی بود که کشف سیاره دهم را بیش از 70 سال به تعویق انداخت.)

عده‌ای از دانشمندان این نظریه را مطرح کردند که پلوتو و تریتون زمانی هر دو قمرهای نپتون بودند و حرکت مستقیم داشتند، رویارویی نزدیک این دو باعث دفع پلوتو (تبدیل شدن آن به سیاره‌ای مستقل) و معکوس شدن جهت حرکت تریتون شده است. این سیاره از نوع سنگی- یخی بوده و فاصله چنان زیاد دارد کهتلسکوپ فضایی هابل آن را به سختی می‌بیند. پلوتون که در حاشیه خارجی منظومه شمسی قرار دارد چنان از خورشید دور است که سطح آن را باید سرد و بی روح خواند. اتمسفر رقیق آن از جنس نیتروژن و متان است که احتمالاً در فصل زمستان یخ می‌بندد و به صورت برف آبی کم رنگ می‎بارد. پلوتون با دمای 240- از هر جای دیگری برای زندگی ما آدمیان نامناسب‎تر است. پلوتو هر 153 ساعت یک بار به دور خودش می‌چرخد، پس روز آن تقریبا 6 برابر روز ماست. دوره تناوبی انتقالی آن به دور خورشید (نجومی 4/248 سال) و (هلالی 367 روز) است. در این صورت هر یک سال آن برابر 248 سال ما است!

پلوتو سیاره‌ای است که در ژرفای فضا آرمیده است، سیاره‌ای که اغلب در فهرست رصدی با تجربه‌ترین منجمان هم به چشم نمی‌خورد. آری پلوتو به خاطر فاصله زیادش بسیار کم فروغ جلوه می‌کند. این سیاره با قطری حدود 2274 کیلومتر مقام کوچکترین سیاره منظومه شمسی را به خود اختصاص داده است، به طوری که حتی از 7 قمر گانیمد ، کالیستو ، تیتان ، یو ، تریتون و ماه نیز کوچکتر است. همین موضوع باعث شده که حتی بزرگترین تلسکوپها هم نتوانند جزئیات سطحی آن را به صورت واضح آشکار کنند، و با وجود پیشرفت فناوریهای کنونی پلوتو هنوز هم ناشناخته باقی مانده است.
 

img/daneshnameh_up/0/06/949_image004ZZZ.jpg

 

در خارج از منظومه شمسی ، خورشید فقط شبیه یک ستاره پر نور دیده می شود که چندان گرمایی نیز ندارد. روی سطح سیاره پلوتو به قدری سرد است که جاندا ران در چند ثانیه مانند سنگ یخ می‌زنند.




بر همیمن اساس ناسا تصمیم گرفت تا با اجرای مأموریت افقهای نو New Horizons پرده از اسرار این سیاره دور دست بردارد. این فضاپیما سر انجام پس از تأخیری دو روزه در تاریخ 19 ژانویه 2006 (29 دی 84) به فضا پرتاب شد تا مأموریت 10 ساله خود را آغاز کند. فضاپیما افقهای جدید یا New Horizons در ادامه سفر خود به طرف سیاره مشتری خواهد رفت تا با بهره گرفتن از نیروی جاذبه‌ی این سیاره بر سرعت خود بی افزاید. این فضاپیما در این صورت بسیار زودتر به سیاره پلوتون خواهد رسید این در حالی است که اگر فضاپیما با تأخیر بیشتری پرتاب می‌شد نمی‌توانست از جاذبه‌ی سیاره مشتری برای بالا بردن سرعت خود استفاده کند. علاوه بر این فضاپیمای افقهای نو اطلاعات بسیار مهمی را درباره‌ی کمربند کویپر و اجرام موجود در آن در اختیار ما خواهد گذاشت. 



جمعه 1 فروردين 0برچسب:نپتون,ایزوتوپها, :: 15:44 ::  نويسنده : amirreza ghorbani

 

Uranium - Neptunium - Plutonium
Pm
Np

 
عکس پیدا نشد
جدول کامل
عمومی
نام , علامت اختصاری , شماره Neptunium, Np, 93
گروه‌های شیمیایی اکتینیدها
دوره , بلاک 7 , f-block
چگالی , درجه سختی 20250 kg/m3, n/a
رنگ نقره‌ای فلزی
خواص اتمی
وزن اتمی [237] amu
شعاع اتمی (calc.) 1 E-10 m
شعاع کووالانسی ND pm
شعاع واندر والس ND pm
ساختار الکترونی Rn] 5f46d17s2]
e- به ازای هر سطح انرژی 2,8,18,32,22,9,2
درجه اکسیداسیون (اکسید) 6, 5, 4, 3 (آمفوتریک)
ساختار کریستالی 3 forms: اورتورومبیک,
چهاروجهی و مکعبی
خواص فیزیکی
حالت ماده جامد
نقطه ذوب 910 K (1179°F)
نقطه جوش 4273 K (7232 °F)
حجم مولی 11.59 ((scientific notation|ש»10-6 m3/mol
گرمای تبخیر ND kJ/mol
گرمای هم‌جوشی 5.19 kJ/mol
فشار بخار ND Pa at 1323 K
سرعت صوت ND m/s at 293.15 K
متفرقه
الکترونگاتیویته 1.36 (درجه پاولینگ)
ظرفیت گرمایی ویژه ناشناخته J/kg*K
رسانایی الکتریکی 0.822 106/m اهم
رسانایی گرمایی 6.3 W/m*K
1st پتانسیل یونیزاسیون 604.5 kJ/mol
پایدارترین ایزوتوپها
iso NA نیم عمر DM DE M eV DP
235Np {syn.} 396.1 d α
ε
5.192
0.124
231Pa
235U
236Np {syn.} 154 E3 y ε
β-
α
0.940
0.940
5.020
236U
236Pu
232Pa
237Np {syn.} 1 E_ s SF & α 4.959 233Pa
International System of Units واحدهای STP استفاده شده ، مگر آنکه ذکر شده باشد.

اطلاعات اولیه

نپتون ، یک عنصر ترکیبی جدول تناوبی است که نماد Np و عدد اتمی 93 دارد. این عنصر رادیواکتیو نقره‌ای فلزی اولین عنصر ترانس اورانیک متعلق به گروه آکتنیدها است. نپتون 237 پایدارترین ایزوتوپ آن محصول رآکتورهای هسته‌ای و پلوتون است و می‌تواند به‌عنوان جزئی از تجهیزات آشکارساز نوتروناستفاده شود. 

تاریخچه

نپتون که ( به خاطر سیاره نپتون نامگذاری شده ) ، برای اولین بار توسط "Edwin McMillan" و "Philip Abelson" در سال 1940 کشف شد. این کشف در آزمایشگاه Berkeley Radiation در دانشگاه Berkeley کالیفرنیا جایی که گروه ،ایزوتوپ Np-239 (با نیمه عمر 2.4 روز) را بوسیله بمباراناورانیوم به‌کمک شتاب دادن نوترونها به روش سیکلوترون تهیه کردند، به وقوع پیوست.

نپتون اولین عنصرترانس اورانیم بود که به‌صورت ترکیبی تهیه شد و به‌عنوان اولین ترانس اورانیم گروه آکتنیدها کشف شد. 

پیدایش

مقادیر بسیار ناچیزی از این عنصر در طبیعت به‌عنوان محصول فروپاشی به‌دلیل واکنشهایی در معادن اورانیوم بوجود می‌آید. نپتون با تقلیل NpF3 با باریم و یا بخار لیتیم در دمای 1200 درجه سانتی‌گراد آماده می‌شود و بیشتر اوقات از رها شدن قدرت سوخت هسته‌ای به‌عنوان یک فرآورده در تهیه پلوتون گرفته می‌شود. 

خصوصیات قابل توجه

فلز نقره ای نپتون به خوبی واکنش‌دهنده است و به سه حالت ساختاری یافت می‌شود.


  • نپتون آلفا ، اورتورومبیک ، جرم حجمی 20.25 گرم بر متر مکعب
  • نپتون بتا ( بالای 280 درجه سانتی‌گراد ) ، چهار وجهی ، جرم حجمی 19.36 گرم بر سانتی‌متر مکعب.
  • نپتون گاما (بالای 577 درجه سانتی‌گراد) ، مکعبی ، جرم حجمی 18.00 گرم بر سانتی‌متر مکعب.
     
این عنصر به هنگام محلول بودن ، 4 حالت اکسیداسیون یونی دارد:


  • Np+3 ( ارغوانی کمرنگ ) ، نظیریون خاکی کمیاب Pm+3 ، Np+4 ( زرد سبز )
  • NpO+2 ( سبز آبی )
  • NpO++2 ( صورتی کمرنگ )
که تنها گونه‌هایی را اکسیداسیون می‌کند که در تضاد با خاکهای کمیاب که تنها یونهای (I) , (II) , (IV) را در حالتهای اکسیداسیون نشان می‌دهند، باشند. این عنصر Tri و TetraHalideهایی مانند NpF, NpF3, NpC14 , NpBr3 و NpI3 را شکل داده ، ترکیبات دیگری را که در سیستماکسیژن – اورانیوم وجود دارد، اکسید می‌کند. (مانند Np3O8و NpO2

ایزوتوپها

19 رادیو ایزوتوپ نپتون با پایدارترین آنها Np-237 با نیمه عمر 2.14 میلیون سال ، Np-236 با نیمه عمر 154000 سال و Np-235 با نیمه عمر 396.1 روز مشخص می‌شوند. بقیه ایزوتوپهای رادیو اکتیو آن ، دارای نیمه عمرهای کمتر از 4.5 روز هستند که اکثر آنها نیمه عمرهای کمتر از 50 دقیقه دارند. همچنین این عنصر 4 حالت متا دارد و در حال حاضر پایدارترین ایزوتوپ آن Np-236m با نیمه عمر 22.5 ساعت است.

ایزوتوپهای نپتون با در نظر گرفتن وزن اتمی آنها از 225.0339amu) Np-225) تا Np-244 (244,06amu)مرتب شده‌اند. اولین روش فروپاشی قبل از پایدارترین ایزوتوپ(Np-237) جذب الکترون (با مقدار خوب ارسال آلفا) و اولین روش بعد از ارسال بتا است.

اولین محصولات فروپاشی قبل از Np-237 ایزوتوپهای عنصر 92 (اورانیوم) ، ( اگرچه ارسال آلفا هم عامل تهیه عنصر 91 ، پروتاکتینیم ، است ) و اولین محصولات بعد از ایزوتوپهای عنصر 93 (پلوتونیم) هستند. 


 

مقدمه

اورانوس هفتمین سیاره نزدیک به خورشید و سومین غول از چهار غول گازی است. جبه‌ای از گاز و یخ هسته سنگی این سیاره را پوشانده است. جو اطراف جبه غالباً از متان ساخته شده ، که این گاز باعث وجود رنگهای آبی و سبز که از مشخصات بارز این سیاره هستند، می‌شود. اورانوس در کناره‌های خارجی و سرد منظومه شمسی قرار داشته ، دمای ابرهای فوقانی آن به 210 درجه سانتیگراد زیر صفر (346- درجه فارنهایت) می‌رسد. علی رغم داشتن 15 قمر و یک منظومه حلقوی ، سطح اورانوس مشخصه خاصی ندارد. تنها مشخصاتی که تا کنون مشاهده شده‌اند چند ابر متانی هستند که در سال 1986 بوسیلهکاوشگر فضایی ویجر2 کشف شدند. 

 

فاصله متوسط از خورشید 2.87میلیارد کیلومتر
قطر استوا 51118 کیلومتر
مدت حرکت وضعی 17.90 ساعت
مدت حرکت انتقالی 84.01 سال زمینی
سرعت مداری 6.81 کیلومتر در ساعت
دمای ابر فوقانی -210 درجه سانتیگراد
جرم (زمین = 1) 14.53
چگالی متوسط (آب = 1) 1.29
جاذبه (زمین = 1) 0.79
تعداد قمر 15

 

رصد اورانوس

تحت شرایط بسیار عالی ، اورانوس را می‌توان با چشم غیر مسلح دید. هنگام مشاهده با تلسکوپ ، اورانوس بصورت حلقه کوچکی به رنگهای سبز و آبی دیده می‌شود. 15 قمر اورانوس تا کنون کشف شده‌اند که به موازات استوای سیاره و در جهت چرخش سایره ، به دور آن می‌چرخند. در اثر انحراف محور چرخش اورانوس ، صفحه استوای سیاره تقریباً عمود بر صفحه دایرة البروج است.

به همین سبب ، گاهی اوقات مانند سالهای 1945 و 1987، اگر از زمین به اورانوس بنگریم فقط قطب آن دیده شده ، مدار قمرهای سیاره تقریباً بصورت صفحه‌ای کامل به نظر می‌رسد. بعضی اوقات نیز ، مانند سالهای 1966 و 2008 ، کناره مدار قمرهای اورانوس دیده شده ، چنین به نظر می‌رسد که قمرها در مسیری مستقیم عقب و جلو می‌روند. 

خواص فیزیکی اورانوس

محور چرخش اورانوس حدود 98 درجه نسبت به صفحه مدار سیاره به دور خورشید انحراف دارد. بنابراین اورانوس بر خلاف سایر سیاره‌ها ، روی محوری تقریباً افقی می‌چرخد. انحراف محور اورانوس تأثیر زیادی بر قطبهای سیاره می‌گذارد و باعث می‌شود که هر قطب از دوره تناوب مداری که 84 سال زمینی طول می‌کشد، 42 سال را در روشنایی و 42 سال دیگر را در تاریکی بگذراند. به هر حال ، اورانوس به قدری از خورشید دور است که تفاوت دما در قطبها در طول تابستان و زمستان فقط 2 درجه سانتیگراد (3.6 درجه فارنهایت) است.

اورانوس سومین سیاره بزرگ منظومه شمسی بوده ، بزرگی آن 4 برابر زمین است. دوره تناوب مداری این سیاره 84 سال زمینی است و بعد از نپتون و پلوتون ، طولانی‌ترین مدار را دارد. 

حلقه‌های اورانوس

img/daneshnameh_up/d/d3/Charkheshoranoos.jpg
تصادم عظیم احتمال دارد که در گذشته ،
جسم آسمانی بزرگی به یک طرف اورانوس برخورد کرده
و باعث انحراف محور چرخش آن شده است.





بخاطر تیرگی زیاد مواد سازنده حلقه‌های اورانوس ، مشاهده آنها بسیار مشکل است. در سال 1977، این حلقه‌ها در مسیر نور یک ستاره قرار گرفته و بدین ترتیب کشف شدند. کاوشگر فضاییویجر2 در سال 1986 یازده حلقه باریک این سیاره را از نزدیک مورد بررسی قرار داد. مواد تشکیل دهنده این حلقه‌ها سنگهایی به اندازه یک متر (یک یارد) هستند. پهنای حلقه "اپسیلون" از 20 تا 100 کیلومتر (12 تا 60 مایل) متغیر است. 

قمرهای اورانوس

15 قمر تا کنون برای اورانوس شناخته شده‌اند که مواد تشکیل دهنده تمام آنها مخلوطی از سنگ و یخ است. در سطح چهار قمر بزرگ اورانوس (ابرن ، تیتانیا ، آمبریل ، آریلگودالهای شهابسنگیوجود دارند. سطح میراندا ، پنجمین قمر بزرگ اورانسو ، مشخصات مختلفی دارد، از جمله دشتهایی پوشیده از گودالهای شهابسنگی قدیمی ، تپه‌های بزرگ و دره‌های عمیقی که سطح این قمر را شکافته‌اند. به نظر ستاره شناسان ، دلیل ویژگیهای متفاوت سطح میراندا این است که این قمر احتمالاً بر اثر یک تصادم عظیم متلاشی شده و سپس دوباره جمع شده است. 

 

img/daneshnameh_up/8/88/Ghamareoranoos.jpg

 

 



 

مقدمه

زحل از جنبه‌های زیادی شبیه مشتری است، جز اینکه در اطراف آن چندین حلقه شگفت انگیز وجود دارد. جرم زحل ، صد بار بیش از جرم زمین است. و لی تقریبا تمام ماده آن به شکل گاز است و صخره‌ای نیست. لایه‌های ابری جو آن مانند ابرهای مشتری واضح نیستند. اما وجودشان حتمی است. ده قمر در اطراف زحل وجود دارد. قطر یکی از آنها که تیتان نامیده می‌شود، حدود 6000 کیلو متر است. از این رو بزرگترین قمر در منظومه شمسی به حساب می‌آید. تیتان خود دارای جوی است که از متان و آمونیاک تشکیل یافته است.

 

img/daneshnameh_up/0/0a/Mehvarezohal.jpg
 
فاصله متوسط از خورشید 1/43 میلیارد کیلومتر
قطر استوا 120536 کیلومتر
مدت حرکت وضعی 10/23 ساعت
مدت حرکت انتقالی 29/46 سال زمینی
سرعت مداری 9/64 کیلومتر در ثانیه
دمای ابر فوقانی 180- درجه سانتیگراد
جرم (زمین=1) 95/18
چگالی متوسط (آب=1) 0/69
جاذبه(زمین=1) 0/93
تعداد قمر 21
 

 

پدر مشتری

در ورای مشتری آخرین سیاره از هفت سیاره‌ای که برای پیشینیان ما شناخته شده بود، زحل قرار دارد، که به عنوان پدر مشتری نامگذاری شده است. زحل دومین سیاره بزرگ مشتری گون منظومه شمسیاست و توسط یک رشته از حلقه‌های بسیار زیبا که به دور آن حلقه زده‌اند، احاطه شده است. در آسمان شب زمین ، زحل به دلیل اندازه بزرگ و آلبدو بالای (50%) دارای جوی درخشان است. زیبایی آسمان زحل به خاطر نوارهای روشن حلقه‌های اطراف آن و نیز به خاطر قمرهای زیادش می‌باشد. 

حرکت زحل

زحل با نیم قطر اطول 9.539AV و دوره تناوب گردش نجومی 29.458 سال ، در مداری با خروج از مرکز557% که با دایرِة البروج زاویه 49.2 درجه می‌سازد، می‌گردد. از روی زمین قطر زاویه‌ای زحل در نقطه مقابله حدود 20 دقیقه است. مانند مشتری ، زحل دارای جو غلیط پر از ابری است که به صورت جزئی می‌چرخد. از مشاهدات انتقالات دوپلری در عرض سیاره و با زمان بندی دقیق علامتهای جوی ، دوره تناوب چرخش نجومی آن ، در نزدیک استوایش 10 ساعت و 14 دقیقه و در عرضهای جفرافیایی بالا 10 ساعت و 38 دقیقه محاسبه شده است. در اینجا هم مجددا چرخش جزئی مشابه مشتری داریم. استوای زحل به اندازه 26 درجه و 45 دقیقه با صفحه مداری آن زاویه می‌سازد، بطوری که قطبهای سیاره در فاصله‌های زمانی حدود 15 سال یک بار سمت زمین متمایل می‌شوند. چرخش باعث پخی زیاد (96%) زحل می‌گردد، بطوریکه شعاعهای قطبی و استوایی به نسبت 10/9 می‌باشند. 

مشخصات فیزیکی زحل

زحل شباهت قابل توجهی با مشتری دارد، ولی کمی کوچکتر است و جرم آن کمتر از جرم مشتری (95M). زحل کمترین چگالی حجمی را نسبت به سایر سیارات دارد. ساختار جو زحل با کمربندهایی که به موازات استوا امتداد دارند، مشابه است. آشفتگیهای کمربندهای زحل خیلی کمتر (تاکنون از روی زمین فقط 10 لکه مشاهده شده‌اند) از مشتری است. جو زحل احتمالا ترکیب خیلی مشابه‌ای با جو مشتری دارد. تاکنون متان (CH4) ، آمونیاک (NH3) ، اتان (C2H6) ، فسفین (PH3) ، استیلن (C2H2) ، متیل استیل(C3H4) ، پروپان (C3H8) و هیدروژن مولکولی (H2) آشکار شده است.

ابرهای زحل خیلی کمرنگ تر از ابرهای مشتری به نظر می‌رسند.ابرهای مشتری اغلب به رنگ زرد کم رنگ و نارنجی هستند، به این دلیل که دما در زحل کمتر از مشتری است، ابرهای زحل در لایه پایین تر جوش قرار می‌گیرند. درون زحل احتمالا ترکیب مشتری را دارد. تخمینهای نظری مقادیر حدود 74% هیدروژن ، 24% هلیوم ، %2 عناصر سنگین تر را پیشنهاد می‌کند. این ترکیب تقریبا مشابه ترکیبات خورشید است. زحل ممکن است یک هسته سنگین کوچک به قطر 20 هزار کیلومتر و جرمی معادل 20Mφ را داشته باشد. 

 

img/daneshnameh_up/9/94/Halgheyezohal.jpg
درخشانترین حلقه‌ها
درخشندگی حلقه‌های آ، ب، ج
بقدری است که می‌توان آنها را
از زمین مشاهده کرد.

 

حلقه‌های زحل

حلقه‌های زحل با مدار زحل هم صفحه نیستند، بلکه زاویه‌ای با هم می‌سازند. یکی از اثرات این پدیده در نظر ما تغییر گشادگی حلقه‌ها است. طی گردش 29 ساله زحل دور خورشید ، دوباره می‌توانیم حلقه‌ها را در گشادترین حالت ببینیم. غیر از این دو حالت ، حلقه‌ها از لبه دیده می‌شوند و جز با تلسکوپ پر قدرت ، قابل مشاهده نیستند. از این طریق معلوم شد که ضخامت حلقه‌ها فقط پنج کیلومتر است. حلقه‌های زحل از میلیاردها ذره ریز تشیکل یافته‌اند که اندازه بیشترشان چند سانتیمتر است. همه آنها ، مانند ماهواره‌های کوچک ، به دور زحل گردش می‌کنند. 

گسیختگی کاسینی

img/daneshnameh_up/0/03/Shekafekasini.jpg
شکاف پر شده
قبل از کشف کاسینی ، ستاره شناسان
حلقه‌های زحل را بصورت حلقه‌ای
پیوسته تصور می‌کردند.





در سال 1675 میلادی (1504 شمسی) جووانی دومینیکو کاسینی ، اخترشناس ایتالیایی ، کشف کرد کهحلقه زحل از دو حلقه تشکیل یافته است و میان آن دو جدایی وجود دارد. این جدایی گیستختگی کاسینی نامیده می‌شود و در اثر کشش گرانشی قمر غول پیکر تیتان بوجود آمده است. مطالعات بعدی نشان داده‌اند که در اطراف زحل ، بر روی هم چهار حلقه وجود دارد. داخلی ترین آنها بسیار کم نور و تقریبا با بالای ابرها در تماس است. قطر حلقه نورانی بیرونی به 140000 کیلومتر می‌رسد. 

قمرهای زحل

20 قمر تاکنون برای زحل شناسایی شده‌اند، که 13 قمر از زمین و هفت قمر دیگر بوسیله کاوشگرهای فضایی کشف شده‌اند. قمرهای کوچک زحل به شکل سیب زمینی بوده و شکلهای نامنظمی دارند. احتمال می‌رود که قمرهای کوچکتر دیگری نیز کشف شوند. سطح بسیاری از قمرها پوشیده از گودالهای شهابسنگی است. در سطح میماس ، یکی از قمرهای کوچک زحل ، گودالی بزرگ به نام هرشل وجود دارد که 130 کیلومتر (81 مایل) وسعت داشته و یک سوم این قمر را پوشانده است. 

 

img/daneshnameh_up/9/95/Ghamarezohal.jpg





زحل دارای بیشترین قمر در بین سیارات منظومه شمسی است. دانشمند هلندی ، کریستین هوینگس (95 – 1629)، در سال 1655 اولین قمر زحل را کشف کرد. تیتان از لحاظ بزرگی دومین قمر و یکی از سه قمری است که در منظومه شمسی دارای جو هستند. تصور می‌شود که قسمت اعظم آن ازسنگ و بقیه از یخ تشکیل شده باشد. جوی که دائما سطح تیتان را پوشانده است، حاوی نیتروژن و سایر مواد شیمیایی است. اختر شناسان به تازگی قمر جدیدی از سیاره زحل را شناسایی کرده‌اند که بسیار کوچک است (حدودآ 2 کیلومتر). در این صورت تعداد قمرهای زحل به 21 قمر تغییر می‌کند. 

میدان مغناطیسی زحل

میدان مغناطیسی دارای یک گشتاور کلی برابر 35/1 گشتاور مشتری است. اما این مقدار به حد کافی قوی است که یک میدان مغناطیسیسپهر مشتری گون با کمربندهای تابشی مشابه زمین ایجاد کند.گشتاور دو قطبی مغناطیسی با میل یک درجه نسبت به محور چرخش زحل قرار می‌گیرد که این مقدار با انحراف مشخص محورهای مغناطیسی مشتری و زمین تفاوت آشکار دارد. مغناطیس سپهر زحل ذرات بسیار کمتری از ذرات مغناطیس سپهر مشتری را در خود جای می‌دهد. 

 

img/daneshnameh_up/b/ba/Sakhtarezohal.jpg





دو دلیل عمده این تفاوت شامل کمبود یک منبع محلی ذرات بار دار که در مورد مشتری توسط فورانهای آیو تولید می‌شوند و حلقه‌های قابل رویت زحل که بطور موثری ذرات باردار را جذب کرده و مغناطیس سپهر داخلی را از ذرات باردار خالی می‌کنند، است. در خارج لبه حلقه‌ها چگالی ذرات باردار به سرعت افزایش می‌یابد و در حدود 5Rs تا 10Rs به یک قله می‌رسد. در اینجا ، ذرات باردار بطور محکم به میدان مغناطیسی در حال دوران سریع جفت می‌شوند. این برهمکنش ، لایه‌ای از پلاسما به ضخامت تقریبا 2Rs ایجاد می‌کند که تا حدود 15Rs ادامه می‌یابد.در ورای این مقدار ، مغناطیس سپهر شکل خود را از دست می‌دهد. اندازه آن با دمای خورشید تغییر می‌یابد. 



 


img/daneshnameh_up/9/91/Mehvaremoshtari.jpg
فاصله متوسط از خورشید 778/33 کیلومتر
قطر استوا 142984 کیلومتر
مدت حرکت وضعی 9/48 ساعت
مدت حرکت انتقالی 11/86 سال زمینی
سرعت مداری 13/06 کیلومتر در ثانیه
دمای ابر فوقانی -150 درجه سانتیگراد
جرم (زمین=1) 317/93
چگالی متوسط (آب=1) 1/33
جاذبه (زمین=1) 2/54
تعداد قمر 16

نگاه اجمالی

مشتری پنجمین سیاره نزدیک به خورشید و اولین غول از چهار غول گازی است. مشتری بزرگترین سیاره منظومه شمسی بوده و جرم آن از تمام سیارات دیگر بیشتر است. مشتری که نزدیکترین سیاره غول پیکر به خورشید است، از نظر بزرگی و جرم در مقام اول جای دارد. هنگامی که در آسمان پدیدار می‌شود، به غیر از زهره از تمام ستارگان و سیاره‌های دیگر ، نورانی تر دیده می‌شود. اشکال گوناگونی در مشتری دیده می‌شود که حتی با یک تلسکوپ کوچک نیز قابل رویت است. مثلا لکه بزرگ سرخ رنگی می‌توان در آن دید. موقعی که به مشتری نگاه می‌کنیم، فقط ابرها و توفانهای جو فوقانی آن را می‌بینیم. حتی تلسکوپهای مستقر در سفینه‌های فضایی نمی‌توانند از سطح پنهان در زیر هزاران کیلومتر گاز تیره جو آن تصویر بدست آورند.حجم این سیاره 1300 برابر زمین، و جرم آن دو و نیم برابر جرم تمامی سیارات منظومه شمسی است. ابرهای انواری شکل مشتری غالباً از گازهای هیدروژن و هلیومتشکیل شده اند. جو درونی سیاره حدود 1000 کیلومتر (600 مایل) پایین‌تر از ابرها شروع می‌شود که در این نقطه گاز هیدروژن به مایع تبدیل می‌گردد. در اعماق پایین تر، هیدروژن حالت فلزی دارد. در مرکز مشتری ، هسته‌ای سنگی و بسیار داغ وجود دارد که حرارتش به 3500 درجه سانتی گراد (63000 درجه فارنهایت) می‌رسد. 

مشتری گون

img/daneshnameh_up/6/62/Moshtari.jpg

آن سوی مریخ ، از کمربند سیاری به اندازه تقریبا 3AV عبور می‌کنیم و بالاخره به بزرگترین سیاره مشتری گون یعنی مشتری که به خاطر نام سلطان خدایان اولمپیا (Olym pian) نامگذاری شده است، می‌رسیم. به دلیل اندازه بسیار بزرگ و آلبدوی زیاد آن (51%) ، مشتری در آسمان شبهای زمین به خصوص در نقطه مقابله یک سیاره خیلی روشن است. سیاره‌های غول پیکر منظومه شمسی ، بطور قابل ملاحظه‌ای بزرگتر از سیاره‌های درونی هستند. برای مثال ، قطر مشتری یازده برابر قطر زمین و حجم آن ، هزار برابر حجم زمین است. ولی چگالی این سیاره‌ها در حدود چگالی آب است. 

حرکت مشتری

مدار مشتری حول خورشید ، خروج از مرکز کمی دارد (0.0484) و تنها به اندازه 1.31 درجه نسبت به دایرةالبروج میل دارد. نیم قطر طول مدار آن 5.2028AV است. این سیاره یک مدار نجومی را در 11.862 سال زمینی طی می‌کند. دوره تناوب مداری هلالی 398.88 روزه آن ، دلالت بر این دارد که مشتری (با شکل کامل) هر سال دیرتر به نقطه مقابله بر می‌گردد. از آنجا که فقط می‌توانیم جو غلیظ مشتری را ببینیم، دوره تناوب چرخش سیاره بوسیله دوره تناوب چرخش اشکال جوی آن ، نظیر لکه قرمز بزرگ با اندازه گیری انتقال دو پلری نور از لبه‌های نزدیک و دور شونده و با مطالعه چرخش ساختار میدان مغناطیسی تعیین می‌شود.

در می‌یابیم که محور چرخشی مشتری 7 دقیقه و 3 ثانیه نسبت به محور مداری آن میل دارد. اما دوره تناوب چرخشی نجومی آن از 9 ساعت و 50 دقیقه در استوا تا 9 ساعت و 55 دقیقه در عرضهای جغرافیایی بالاتر تغییر می‌کند. از این رو جو گازی شکل مشتری یک چرخش جزئی نشان می‌دهد. در استوا سریعترین و در قطبین آهسته‌ترین (خورشید نیز به مدار جزئی می‌چرخد، زیرا آن هم یک سیال است) است. چرخش بسیار سریع مشتری در اثر پخی زیاد آن نتیجه می‌شود. 



img/daneshnameh_up/4/4c/Lakemoshtari.jpg
گردباد
لکه سرخ بزرگ ناحیه‌ای پر فشار است
که در آن گردبادهای بالارونده ، گازهای
مختلفی را با خود وارد جو می‌کنند.

مشخصات فیزیکی

شعاع استوایی (11.19Rφ) و جرم (318Mφ) مشتری توسط مشاهدات مدرای ، و پنهان شدگیهایی اقمارش و بوسیله اختلالات جاذبه‌ای آن در مدارات ستاره‌های دنباله‌دار و سیارکها و بوسیله اندازه گیری قطر زاویه‌ای قرص قابل رویت آن (47 ثانیه در نقطه مقابله) و بوسیله اندازه گیریهای مسافر (Voyager) که از کنار آن در حال عبور است، بطور دقیق معین شده است. این مدل خیلی بزرگ سیارات مشتری گون ، دارای چگالی متوسط 1330Kg/m3 است. این چگالی دلالت بر این دارد که ترکیبات مشتری شبیه خورشید با فراوانی حدود 75 درصد هیدروژن ، 24 درصد هلیوم و یک درصد تمام عناصر سنگینتر (از لحا‌ظ جرمی) است. قسمت اعظم مشتری ، کاملا برخلاف درون زمین و سایر سیارات خاکی ، از هیدروژن تشکیل شده است و بیشتر آن به صورت مایع می‌باشد. دمای هسته ممکن است حدود 10 برابر داغ تر از زمین ، بالغ بر 4000 درجه کلوین ، باشد. عامل چرخش همرفتی جو ، شارش گرما از هسته به بیرون است. چرخش سریع سیاره ، شتاب کوریولیس بزرگی ایجاد می‌کند که جو لایه‌ لایه‌ای زیبایی بوجود می‌آورد. 

لکه سرخ بزرگ

لکه سرخ بزرگ ، یک ناحیه واچرخه‌ای بزرگ (نوعی گردباد) در ابرهای فوقانی سیاره مشتری است. از زمان کشف این لکه تا کنون ، بارها دیده شده که قطر آن تا سه برابر قطر زمین افزایش یافته است. جریانهای چرخان گاز که در این لکه وجود دارند، فسفر را ار جو تحتانی به بالا مکیده و باعث قرمز یا صورتی شدن لکه می‌شوند. این لکه از محیط اطراف خود بلندتر و سردتر است و هر 12 روز زمینی، یک دور در جهت عکس عقربه‌های ساعت به دور خودش می‌چرخد. 

حلقه‌های مشتری

منظومه حلقه‌های مشتری در سال 1979 توسط کاوشگر فضایی ویجر 1 کشف گردید. سه حلقه مشتری به ترتیب زیر نامگذاری شده اند:

حلقه هاله به عرض 22800 کیلومتر (14170 مایل). حلقه اصلی که حلقه‌ای باریک و درخشان است به عرض 6400 کیلومتر (3980 مایل). و حلقه تار عنکبوت (گسامر) که رقیق‌ترین و عریض ترین حلقه می‌باشد به عرض 8500 کیلومتر (53000 مایل). حلقه تار عنکبوت که در این تصویر ساختگی به رنگ آبی کمرنگ دیده می‌شود، از حلقه اصلی که مشتری را احاطه می‌کند بیرون زده است. 

میدان مغناطیسی

img/daneshnameh_up/3/38/Ghamarhayemoshtari.jpg

مشتری از خود گسیلهای رادیویی نشان می‌دهد که به میدان مغناطیسی مشتری گون در حدود 1x10-4T در سطح سیاره ربط داده شده است. این میدان مغناطیسی شدید در اثر یک ساز و کار دینامیکی در هسته مایع هیدروژن فلزی در حال چرخش سریع بوجود می‌آید. در طول موجهای 3 تا 75 سانتیمتر مشاهده شده است که سیاره به صورت غیر حرارتی تشعشع می‌کند. این تابش دسیمتری و یا DIM عبارت است از تابش همزمان در اثر الکترونهای نسبیتی با تندی خیلی نزدیک به تندی نور در کمربندهای تابشی مشتری گون ، که بوسیله میدان مغناطیسی مشتری به دام افتاده‌اند و به صورت مارپیچی حرکت می‌کنند. 

محور مغناطیسی با محور چرخش مشتری ، زاویه‌ای حدود 10 درجه می‌سازد. این میدان مغناطیسی شدید یک مغناطیس سپهر عظیم در اطراف مشتری بوجود می‌آورد که باد خورشیدی را دور نگه می‌دارد. مشتری میدان مغناطیسی بسیار بزرگی دارد که تا فاصله‌های دور دستی در فضا امتداد یافته است. ذرات باردار ، به هنگام حرکت در میان این میدان ، علامتهای رادیویی گسیل می‌کنند. تلسکوپهای رادیویی با دریافت آنها می‌توانند پوشش مغناطیس اطراف مشتری را نقشه برداری کنند. 

قمرهای مشتری

img/daneshnameh_up/9/96/Sakhtaremoshtari.jpg

گالیله در سال 1610 میلادی (989 شمسی) ، چهار قمر اصلی مشتری را کشف کرد. اسامی آنها شامل یو ، اروپا ، گانیمد و کالیسو است. این چهار قمر ، حتی با دوربین دو چشمی نیز دیده می‌شوند. یو درکمتر از دور روز ، اروپا در سه روز و نیم و گانیمد در یک هفته و کالیسو در حدود هفده روز ، مشتری را دور می‌زنند. اگر در چند شب ، نموداری از مشتری و قمرهایش تهیه کنیم، رقص آنها به دور سیاره مادر آشکار می‌شود. گالیله دریافت که مشتری ، خود یکمنظومه شمسی کوچک است. علاوه بر این چهار قمر که قمرهای گالیله نیز نامیده می‌شوند، دست کم 9 قمر کوچکتر در اطراف مشتری وجود دارد. آنها را می‌توان با تلسکوپهای بزرگ عکسبرداری کرد.

شانزده قمر مشتری به چهار گروه چهارتایی تقسیم می شوند . گروه اول در فاصله حدود 130000 کیلومتری (80000 مایل). گروه دوم در فاصله حدود 200000 کیلومتری (125000 مایل). گروه سوم در فاصله 9 میلیون کیلومتری (6/5 میلیون مایل). و گروه چهارم در فاصله ای نزدیک به گروه سوم قرار دارند. جهت چرخش تمام گروهها بجز گروه چهارم، همان جهت چرخش مشتری است. همه قمرهای مشتری بجز قمرهای گروه دوم، کوچک هستند. قمرهای گروه دوم که گالیله ای نام دارند هم اندازه ماه زمین هستند. گانیمید ، یک قمر گالیله ای چهار قمر بزرگ مشتری که توسط گالیله (1642-1564) کشف شدند، قمرهای گالیله‌ای نامیده می‌شوند. سیاره مشتری دارای بزرگترین قطر و بیشترین جرم در میان تمام سیارات منظومه شمسی است. استوای مشتری 11 برابر استوای زمین است. این سیاره سریعتر از سایر سیارات به دور خود می چرخد. دوره چرخشی مشتری نصف دوره چرخشی زمین است. 


پنج شنبه 15 فروردين 1392برچسب:مریخ,جو مریخ,مشخصات فیزیک مریخ,حیات در مریخ,منظره مریخ, :: 17:7 ::  نويسنده : amirreza ghorbani

 

تصویر

مقدمه

مریخ ، سیاره سرخ فام منظومه شمسی ، نصف زمین قطر دارد و مساحت سطح آن برابر با مساحت خشکیهای روی زمیناست. درست مانند زمین ، یخهای قطبی ، دره‌های عمیق ، کوه ، غبار ، طوفان و فصل دارد. در دشتهای آن مانند ماه ، گودالهای برخوردی حاصل برخورد سنگهای آسمانی دیده می‌شود. با وجود اندازه کوچکش ، بلندترین کوه و بزرگترین دره منظومه شمسی در این سیاره پیدا شده است. 



img/daneshnameh_up/5/5b/Sathemerikh.jpg

فاصله متوسط از خورشید 227/94 کیلومتر
قطر استوا 6786 کیلومتر
مدت حرکت وضعی 24/62 روز زمینی
مدت حرکت انتقالی 686/98 روز زمینی
سرعت مداری 24/14 کیلومتر در ثانیه
دمای سطحی -120 تا 25 درجه سانتیگراد
جرم (زمین=1) 0/11
چگالی متوسط (آب=1) 3/95
جاذبه (زمین=1) 0/38
تعداد قمر 2

جو مریخ

جو زمین شامل ۷۷ درصد نیتروژن و ۲۱ درصد اکسیژن است. درحالی که در جو مریخ ۹۵ درصد دی اکسید کربن و فقط ۲۰ درصد اکسیژن وجود دارد. آیا فقط یک کپسول اکسیژن و یک ماسک ما را روی مریخ نجات خواهد داد؟ خیر. جو سیاره سرخ بسیار رقیق است، بطوری که بر سطح سیاره فشار جوی معادل یک صدم فشار جو زمین در سطح دریاست. اگر لباس فضایی مناسبی نپوشید که فشار هوای طبیعی را ایجاد کند، ارگانهای درونی بدن ما به دلیل فشار درونی که داریم باد می‌کنند. علاوه بر این جو مریخ محافظ خوبی در برابر تابشهای مرگبار فضایی نیست و طی مدتی نه چندان دراز این تابشها می‌تواند اثرات جبران ناپذیری بر بدن انسان بگذارد. پس باید لباس مخصوصی را به همراه داشت. 



img/daneshnameh_up/4/45/Mehvaremerikh.jpg

مشخصات فیزیک مریخ

مریخ ، سیاره سرخ ، چهارمین سیاره نزدیک به خورشید است. مریخ شباهتهای زیادی با کره زمین دارد. روزهایش کمی از روزهای زمین بلند تر و الگوی فصلهایش شبیه به الگوی فصلهای زمین است، با این تفاوت که طول فصلهایش دو برابر طول فصلهای زمین است. ابر ، آتشفشان ، دره ، کوه ، صحرا و قطبهای سفیدی که در فصول مختلف بزرگ و کوچک می‌شوند، همانند زمین در مریخ نیز یافت می‌شوند. مریخ سیاره‌ای خشک و سرد است که در آن حیات وجود ندارد، سطح مریخ مملو از صخره بوده و پوشیده از غباری قرمز رنگ است. بالاخره اینکه مریخ دارای جوی رقیق و سمی است. 



img/daneshnameh_up/c/ce/Ghamaremerikh.jpg img/daneshnameh_up/d/d6/Ghamaremerikh2.jpg
دیموس
دیموس با قطری حدود 13
کیلومتر (8مایل) کوچکتر از
قمر دیگر مریخ (فوبوس) است.<br>
فوبوس
فوبوس دارای قطری به اندازه
22 کیلومتر (14 مایل) بوده
با فاصله میانگین 9400 کیلومتر
(5840مایل) به دور مریخ می‌چرخد.




مریخ دارای دو قمر کوچک به نامهای فوبوس و دیموس است. از شکل نا منظم و سیب زمینی مانندشان پیداست که این اقمار سیارکهایی بوده‌اند که گرفتار میدان جاذبه مریخ شده و در مدار این سیاره قرار گرفته‌اند. در سطوح هر دو قمر گودالهایی دیده می‌شود. 

حیات در مریخ

رصد کنندگان ، با استفاده از تلسکوپهایشان با زحمت فراوان اطلاعاتی راجع به مریخ جمع آوری کردند. تمام آن اطلاعات اکنون جای خود را به اطلاعات جمع آوری شده بوسیله تعدادی از کاوشگرهای فضایی آمریکایی و روسی بخصوص مارینر 9 داده‌اند. در سال 1976، دو فضاپیمای وایکینگ در کره مریخ فرود آمدند تا نشانه‌ای از حیات در آن بیابند. با توجه به آزمایشهای وسیعی که روی نمونه‌هایی از خاک مریخ انجام شده ، تاکنون امکان وجود حیات در این سیاره اثبات نشده است. 



img/daneshnameh_up/5/5c/Hayatdarmerikh.jpg
نقشه اسکیاپارلی
در سال 1877، اسکیا پارلی نقشه
خطوطی که تصور می‌کرد روی
سطح مریخ دیده است را ترسیم کرد.




جووانی اسکیاپارلی (1910-1835) ، ستاره شناس ایتالیایی ، چنین تصور کرد که اشکال زاویه داری روی سطح مریخ دیده و آنها را کانال (گذرگاه) نامید. این کلمه به اشتباه ، آبراه ترجمه شد و باعث شد تا مردم باور کنند که مریخیها برای انتقال آب از کانالهای آبی استفاده می‌کنند. همچنین ، تصور می‌شد که نواحی تیره در اندازه‌های مختلف محل رشد گیاهان هستند که با تغییر فصول سال تغییر می کنند. امروزه می‌دانیم که آن گذرگاهها نوعی خطای دید بوده و آن نواحی تیره نیز صخره‌هایی هستند که هنگام از بین رفتن غبار قرمز رویشان ، آشکار می‌شوند. 

منظره مریخ

در نیمکره جنوبی مریخ گودالهای شهابسنگی وجود دارند که 3.5 میلیارد سال از عمرشان می‌گذرد . سطح نیمکره شمالی جوانتر است، چرا که قسمت اعظم آن توسط فعالیتهای آتشفشانی اخیر پوشیده شده است. مریخ دارای دو مشخصه منحصر به فرد در منظومه شمسی است: بلندترین کوه آتشفشانی المپ مانس و دره والس مارینریس به عمق 7 کیلومتر (4.5 مایل) و عرض 600 کیلومتر (370 مایل) در این سیاره قرار دارند. همچنین ، گذرگاههای کوچکتری نیز وجود دارند که احتمال می‌رود در گذشته بر اثر جریان آب بوجود آمده باشند. 



img/daneshnameh_up/4/4b/Manzaremerikh.jpg
بزرگترین کوه آتشفشان ارتفاع المپ مانس سه برابر
ارتفاع ماونالوآ ، بلندترین کوه آتشفشات در زمین است.




مریخ سیاره ای است که بیشترین شباهت را با کره زمین دارد، هر چند که اندازه‌اش نصف اندازه زمین است. روز مریخی (فاصله دو طلوع خورشید) فقط 38 دقیقه از روز زمینی طولانی‌تر است. همچنین ، انحراف محور مریخ 1.7 درجه بیشتر از انحراف محور زمین است. 


پنج شنبه 15 فروردين 1392برچسب:عطارد,ویژگیهای عطارد, :: 16:52 ::  نويسنده : amirreza ghorbani

 عطارد یا تیر نخستین و نزدیکترین سیاره منظومه شمسی به خورشید است. از نظر اندازه نسبت به دیگر سیارات بعد از پلوتو کوچکترین آنها نیز به حساب می آید. قطر آن 4880 کیلومتر است. این سیاره در یک مدار بیضی شکل به دور خورشید می گردد که خروج از مرکز آن 0.2506 است. نزدیکترین فاصله آن ازخورشید تنها 9/45 میلیون کیلومتر دورترین فاصله آن 7/69 میلیون کیلومتر فاصله دارد. لذا همواره در اطراف خورشید حضور دارد و برای ما تنها در هنگام طلوع و غروب قابل رویت است. این سیاره بسیار گرم است و درجه حرارت سطح آن در هنگام روز به حدود 427 درجه سانتیگراد و در شب به 173 درجه زیر صفر کاهش می یابد. عطارد هر 88 روز یک بار یک دور به گرد خورشید می چرخد ( دوره تناوب نجومی ). در حالی که در مدت 5/58 روز یک دور به دور خود می چرخد ( حرکت وضعی ). در عطارد هیچ گونه جوی وجود ندارد، ولی برخی مطالعات وجود مقدار کمی گاز هلیوم را که گفته می شود از طریق بادهای خورشید به گرد این سیاره قرار گرفته اند اثبات می کند. شکل ظاهری این سیاره بسیار آبله گون است و چهره ای شبیه به کره ماه دارد. 
img/daneshnameh_up/e/e3/mercury2bbb.gif

 

 
حفره های کوچک ویا بزرگ بسیاری در سطح آن دیده می شود که حکایت از برخورد شهاب سنگهای کوچک و بزرگ دارد البته قطر برخی از دهانه ها به ده ها کیلومتر می رسد. برخی از این دهانه ها محل خروج مواد مذاب است که امروزه با سنگهای مذاب پر شده اند و مانند کوه های آتشفشانی هستند. 
گرچه از گذشته نسبتاً دور، این سیاره با کمک تلسکوپ مورد مطالعه قرار می گرفت، ولی از سال 1974 میلادی با پرواز سفینه مارینر 10 از کنار عطارد چندین هزار عکس از دشتهای مسطح و گودالهای کم و بیش بزرگ، به ایستگاه های زمینی مخابره شد. مارینر 10 میدان مغناطیسی ضعیفی حدود 1 درصد میدان مغناطیسی زمین را در اطراف این سیاره کشف کرد. این سیاره به علت گرمای زیاد در روز و دمای بسیار پایین در شب و نبود جو و نداشتن آب به شکل مایع در سطح یا عمق آن هیچ گونه امکانی برای پیدایش شکلی از حیات ایجاد نکرده استدر عین حال عطارد هیچ قمر ی ندارد. در این حالت سنگهای این سیاره به شدت منبسط می شوند و پس از غروب آفتاب و شب طولانی آن دما به شدت پایین می رود. علت آن هم نبودن جو در اطراف این سیاره است که دما را تعدیل نمی کند. سرد و گرم شدن سنگها در شب و روز و استمرار این امر طی قرون و اعصار تنها یک نوع فرسایش مکانیکی در سطح این سیاره به وجود می آورد. که به متلاشی شدن سنگها می انجامد. اختلاف دما در دو سوی این سیاره در میان سیارات منظومه شمسی منحصر به فرد است. 
تنها طوفانهای مغناطیسی از سوی خورشید مقداری اتم های هلیوم باردار را در اطراف میدان مغناطیسی این سیاره به دام انداخته و فشار جوی ناچیزی (به میزان کمتر از یک میلیاردیم فشار جوی زمین) ایجاد کرده است. برای خنثی کردن جاذبه سطحی این سیاره در خارج شدن از سطح آن تنها به سرعتی به اندازه 4.25 کیلومتر بر ثانیه نیاز است. در حالی که در مورد زمین این مقدار حدود 11 کیلومتر بر ثانیه می باشد که به این سرعت سرعت گریز می گویند. 
نام کوئی پر، کاوشگر نامی سیارات نیز به یکی از گودالهای بزرگ سیاره عطارد به قطر 25 کیلومتر تعلق یافته است. 
دانشمندان معتقدند بر اثر برخورد سهمگین یک شهاب سنگ با این سیاره در گذشته بسیار دور، امروزه در نقطه مقابل این برخورد رشته کوه هایی ظاهر شده اند. در هر حال شهاب سنگها سطح این سیاره را در امان نگذاشته اند. محل اصابت این برخورد عظیم که امروزه رشته کوههای بلند و مدوری آن را احاطه کرده که به حوضه کالوریس به قطر 1300 کیلومتر شهرت یافته است. چگالی این سیاره به میزان 4/5 گرم بر سانتیمتر مکعب تخمین زده شده که اندکی بیشتر از چگالی زمین است. این حقیقت دانشمندان را بر آن داشته است که تصور کنند مرکز این سیاره از فلزات سنگینی مانند آهن تشکیل شده است که با توجه به حرکت آرام چرخشی این سیاره به دور خود میدان ضعیف مغناطیسی در خود ایجاد کرده است. فشار بادهای خورشیدی این میدان ضعیف را در جهت مقابل به خورشید بسیار فشرده کرده و در پشت آن بسیار گسترانده است. گروهی دیگر از دانشمندان پیدایش میدان مغناطیسی در عطارد را به وجود میدان مغناطیسی سنگواره ای نسبت می دهند که از روزگاران قدیم حاصل شده و باقی مانده است. در هر حال علت واقعی این میدان معلوم نیست. 


ویژگیهای عطارد 

همان گونه که قبلاً اشاره شد عطارد نزدیکترین سیاره به خورشید است که در کنار جرم بزرگی به نام خورشید با آن جاذبه وحشتناکش قرار گرفته است. عطارد برای آن که در دل خورشید سقوط نکند و جذب آن نشود دست به مقابله زده است. برای این کار عطارد با سرعت سرسام آوری به گرد خورشید می چرخد و سریعترین سرعت چرخشی به دور مرکز منظومه شمسی را از آن خود کرده است. این سرعت به حدی است که یک سال این سیاره کمتر از سه ماه به طول می انجامد. مدار این سیاره بیضی شکل است و با فاصله اندکی (به طور متوسط 9/57 میلیون کیلومتر) از خورشید و از روی زمین این سیاره در اطراف خورشید دیده می شود. گاهی کمی بعد از غروب خورشید در بالا دست خورشید و زمانی که به آن سوی این ستاره می رسد قبل از طلوع آفتاب در بالای افق شرقی دیده می شود. 
حداکثر فاصله زاویه ای که این سیاره با خورشید دارد حدود 28 درجه است ( از دید زمین ). هنگامی که زاویه کشیدگی این سیاره در حدود 10 درجه است، از درون تلسکوپ به صورت هلال باریکی دیده می شود. لیکن زمانی که می خواهد از پشت خورشید عبور کند قرص روشن خود را به ما نشان نمی دهد. با توجه به 7 درجه انحراف مدار گردش این سیاره به دور خورشید این سیاره در هر بار گردش از جلوی خورشید عبور نمی کند. بلکه از بالا یا پایین خورشید می گذرد. در طول 100 سال عطارد تنها دو بار همچون نقطه تاریک و سیاه رنگی از مقابل قرص خورشید عبور می کند. که به ترانزیت یا عبور معروف است که آخرین آن در سال 1383 بود. 



 

مقدمه

کره ماه که تنها قمر طبیعی زمین است، که پوشیده از سنگ بوده و قطرش یک چهارم قطر زمین می‌باشد. ماه ، نوری از خود ندارد اما نور خورشید را منعکس کرده و قابل رویت می‌شود. کره ماه پوشیده از غبار بوده ، آب و حیات در آن یافت نمی‌شوند. بخاطر جاذبه بسیار ضعیفش نمی‌تواند ذرات گاز را نگه دارد و بنابراین فاقد جو است. در سطح ماه هزاران گودال شهاب سنگی وجود دارند که گدازه آتشفشانی در بعضی از این گودالهای بزرگ تراوش کرده و باعث تشکیل دریا (ماریا) در سطح ماه شده است. 

 

تصویر





چنین به نظر می رسد که ماه پیش از تشکیل ، پوسته‌اش حالتی مذاب داشته است. سن قدیمیترین سنگی که از ماه به زمین آورده شده نشان می‌دهد که این پوسته حدود 4.48 میلیارد سال پیش تشکیل شده است. طی 500 میلیون سال بعد از تشکیل پوسته ، بمباران شدید شهاب سنگها باعث شکستگی ، تغییر شکل و ذوب مجدد پوسته شد. ضربات ناشی از دو شهاب سنگ عظیم اخیر باعث تشکیل دو حوزه (دریا) ارینتال وایمبریوم شده اند. جو جاذبه سطحی ماه بقدری ضعیف است که نمی‌تواند مانع از فرار ذرات گاز به فضا شود. در نتیجه ، جرم کل جو کره ماه به اندازه جرم هوای درون یک استادیوم بسکتبال است. 

 

فاصله متوسط از زمین 384500 کیلومتر
قطر استوا 3476 کیلومتر
مدت حرکت وضعی 27.32 روز زمینی
مدت حرکت انتقالی 27.32 روز زمینی
سرعت مداری 1.02 کیلومتر در ثانیه
دمای سطحی 155- تا 105 درجه سانتیگراد
جرم (زمین = 1) 0.01
چگالی متوسط (آب = 1) 3.34
جاذبه (زمین = 1) 0.16
تعداد قمر 0









اندازه کره ماه در مقایسه با سایر اقمار منظومه شمسی متوسط است. بزرگترین قمر ، متعلق بهمشتری است که گانیمید نام داشته و قطرش 5262 کیلومتر است ، در حالیکه قطر ماه 3476 کیلومتر می‌باشد. از اقمار متعدد کوچکتر ، می‌توان از کردلیا ، قمر اورانوس ، نام برد که فقط 30 کیلومتر قطر دارد. 

 

img/daneshnameh_up/a/a6/Sakhtaremah.jpg



 

شکل گیری ماه

ماه و زمین بطور همزمان و حدود 4.5 میلیارد سال پیش شکل گرفتند. اینکه ماه دقیقا چگونه بوجود آمده هنوز معلوم نشده است. ممکن است همراه با زمین در اوایل شکل گیری منظومه شمسی شکل گرفته باشد، یا اینکه بعدها جذب میدان جاذبه شده و در مدار قرار گرفته است. نظریه‌ای که بیش از سایر نظریه‌ها پذیرفته شده این است که ماه از برخورد یک سیارک به اندازهمریخ به زمین بوجود آمده است.

اثرات متقابل جاذبه‌های زمین و ماه بر همدیگر باعث افزایش مدت حرکت وضعی هر دو جسم شده است. بعنوان مثال ، زمانی مدت حرکت وضعی زمین (طول شبانه روز) فقط 10 ساعت بود، اما این زمان به 24 ساعت کنونی افزایش یافته است. اگر این روند همچنان ادامه پیدا کند، طول ماهها به 47 روز خواهد رسید. اما مقیاس زمانی این روند بسیار طولانیتر از طول عمر خورشید بوده ، بنابر این منظومه شمسی عمر کافی برای رسیدن به آن زمان را نخواهد داشت. قطر خورشید 400 برابر قطر ماه و فاصله آن از زمین نیز 400 برابر فاصله ماه از زمین است. این اتفاق تصادفی باعث می‌شود تا هم ماه و هم خورشید به یک اندازه به نظر رسیده و در هنگام کسوف تمام سطح خورشید گرفته شود. 

 

img/daneshnameh_up/f/f2/Sheklgirimah.jpg



 

چرا ماه به روی زمین سقوط نمی‌کند؟

زمین با نیروی گرانش ماه را به سوی خود می‌کشد. اگر انسان ماه را که در حقیقت بی وقفه به دور سیاره ما می‌چرخد، از گردش باز می‌داشت، ماه فقط برای مدت کوتاهی ثابت می‌ایستاد، آنگاه با سرعتی فزاینده به سمت زمین می‌شتافت و در نهایت با آن برخورد می‌کرد. البته این عمل میسر نیست. ماه از هماه زمانهای اولیه با سرعتی برابر 3659 کیلومتر در ساعت به دور زمین در حال گردش بوده است. در اثر این حرکت گردشی ، یک نیروی گریز از مرکز به سمت خارج ایجاد می‌شود، که درست به اندازه نیروی گرانش زمین که به سمت داخل کشش دارد، است. این دو نیروی مخالف ، اثر یکدیگر را بطور متقابل خنثی می‌کنند، به نحوی که ماه هموراه بر مدار خود باقی می‌ماند. 

گودالها و دریاها

بیش از 3.5 میلیارد سال پیش ، سطح ماه به شدت توسط شهاب سنگها بمباران شد و گودالهای زیادی در سطح آن بوجود آمدند. وسعت بعضی از این گودالها به 300 کیلومتر (185 مایل) می‌رسد که توسط دیواره‌هایی از کوههای سنگی که بر اثر برخورد شهاب سنگها بوجود آمده اند، محصور شده اند. بعضی از گودالها ، دیوارهای تراس دار یا حلقه‌های کوهستانی هم مرکز داشته و در اکثر آنها قله‌هایی نیز وجود دارند. گودالهایی که رگه‌های بزرگ و درخشان توف نام دارند، بسیار تماشایی هستند. تعدادی از گودالهای بزرگتر از گذاره آتشفشانی پر شده و درباهایی در سطح ماه بوجود آورده‌اند. 

 

img/daneshnameh_up/e/ef/Godalkoohestan.jpg
گودال کوهستان
این گودال رگه دار که 84 کیلومتر (52 مایل)
قطر داشته و در جنوب غربی نیمه نزدیک ماه
قرار دارد ، "تیکو" نامیده می شود . تیکو دارای
دیوارهای بلند تراس دار و قله‌های مرکزی است.





هلال و بدر چگونه تشلیل می‌شود؟ 
خورشید خود می درخشد، ماه را از این رو می‌بینیم که خورشید به آن می‌تابد. اگر آن روی ماه که به سوی ماست، بطور کامل مورد تابش خورشید قرار گیرد، ما ماه را بصورت قرص کامل و به عبارت دیگر در حالت بدر مشاهده می‌کنیم. اگر نور خورشید فقط قسمتی از آن روی ماه را که بسوی ماست در بر گیرد، ما ماه را بر حسب میزان تابش نور بصورت هلال باریک نوری ، نیم قرص و یا به صورت یک گلوله تقریبا گرد نورانی می‌بینیم. این پدیده‌های نوری را فازها یا صورتهای مختلف ماه می‌نامند.

هنگامی که ماه در جهت تابش خورشید قرار گیرد، دیده نمی‌شود، زیرا در تابش شدید خورشید محو می‌گردد و علاوه بر این ، آن روی ماه که بسوی ماست مورد تابش واقع نمی‌گردد. این وضعیت را ماه نومی‌نامیم. اکنون ماه بر روی مدار خود به حرکت ادامه می‌دهد و پس از چند روز به طور محسوسی در سمت چپ و یا در شرق خورشید واقع می‌شود. در این وضعیت قسمت کوچکی از نیمه رو به زمین ماه ، تحت تابش نور خورشید قرار می‌گیرد. در این دوران ماه را در اوایل شب بصورت داس باریکی که البته روز به روز بر قطر هلال آن افزوده می‌شود، مشاهده می‌کنیم، زیرا در این وضع ماه بعد از خورشید غروب می‌کند.

تقریبا یک هفته پس از ماه نو ، از دید ناظر زمینی ، ماه دقیقا از پهلو مورد تابش نور خورشید واقع می‌شود. در این حالت انسان نیمی از ماه را تاریک و نیم دیگر را روشن می‌یابد؛ این وضعیت نیم ماه افزاینده یا ربع اول نامیده می‌شود. دوباره یک هفته بعد ، ماه از دید این ناظر ، دقیقا در مقابل خورشید قرار می‌گیرد. در این حالت ماه به صورت قرص کامل نورانی می‌شود ، که به آن بدر (یا در اصطلاح عامیانه ماه شب چهاردهم) می‌گویند.

از این حالت به بعد از قطر قسمت نورانی ماه کاسته می‌شود. تقریبا هفت روز پس از بدر ، دوباره نیم ماه دوم یا ربع آّخر حادث می‌شود. ماه در این حالت از دید ناظر زمینی اکنون در سمت راست یا در غرب خورشید قرار دارد و به عبارت دیگر قبل از طلوع خورشید در آسمان صبحگاهی پدیدار می‌شود، تا بالاخره دوباره به وضعیت ماه نو می‌رسد. 

اهله ماه

همیشه 50 درصد سطح ماه در معرض نور خورشید قرار دارد. میزان ناحیه روشن ماه ، به موقعیت ماه نسبت به زمین و خورشید بستگی دارد. اندازه ناحیه قابل رویت ، از کاملا تاریک تا ماه کامل متغیر است. این دوره کامل هشت مرحله دارد که اهله ماه نامیده می‌شوند. چرخه اهله ماه ، هر 29.53 روز کامل می‌شود. 

 

img/daneshnameh_up/7/76/Kosoof.jpg



 

خسوف و کسوف

گرفتگی زمانی رخ می‌دهد که یک جرم آسمانی بطور موقت در مسیر نور یک جرم آسمانیدیگر قرار گیرد. در طول سال ، 2 یا 3 خسوف (ماه گرفتگی) رخ می‌دهند، آن هم وقتی که زمین بین ماه کامل و خورشید قرار گرفته و بر سطح ماه سایه افکند. یک یا دو کسوف(خورشید گرفتگی) نیز در طول سال رخ می‌دهند. کسوف بر اثر قرار گرفتن ماه بین زمین و خورشید به زمین بوجود می‌آید. هنگام کسوف ، حدود 161 کیلومتر (100 مایل) از زمین در تاریکی قرار می‌گیرد. نقش سایه خورشید گرفتگی فقط زمانی قابل رویت است که سایه ماه روی مکانی که بیننده در آن قرار دارد بیفتد. ماه گرفتگی در هر قسمتی از زمین که روبروی ماه قرار گرفته باشد قابل رویت است. 



 

مقدمه

زمین ، سومین سیاره نزدیک به خورشید و بزرگترین سیاره در میان سیارات درونی است. ساختار درونی زمین مثل سایر سیارات درونی از یک هسته داخلی و یکهسته خارجی به همراه لایه‌های مذاب و نیمه مذاب و سنگی جامد تشکیل یافته است. هسته داخلی فلزی و جامد بوده و توسط هسته خارجی که فلزی و مذاب است، احاطه شده است. 

 

img/daneshnameh_up/e/e8/Mehvarezamin.jpg
فاصله متوسط از خورشید   60.149 کیلومتر
قطر استوا   12756 کیلومتر
مدت حرکت وضعی   93.23 ساعت
مدت حرکت انتقالی   26.365 روز
سرعت حرکت انتقالی   79.29 کیلومتر در ثانیه
دمای سطحی   55 تا 70 درجه سانتیگراد
جرم (زمین = 1)   00.1
چگالی متوسط (آب = 1)   52.5
جاذبه (زمین = 1)   1
تعداد قمر   1







زمین شرایط بسیار منحصر بفردی دارد. هیچکدام از سیارات دیگر آب مایع و جو پر اکسیژن نداشته و حیات در آنها وجود ندارد. تکامل تدریجی زمین که 4.5 میلیارد سال طول کشیده است، همچنان بطور طبیعی و نیز بر اثر فعالیتهای انسان ادامه خواهد داشت. همچنین چگالی زمین از تمام سیارات دیگر بیشتر است.

زمین در آغاز شکل گیری

  • در اوایل پیدایش منظومه شمسی ، ذرات ریز غبار موجود در قرص خورشید که عمدتا از گاز و غبار تشکیل شده بود، پس از برخورد به هم چسبیده و اجسام بزرگ و بزرگتری را بوجود آوردند. بدین ترتیب چهار سیاره درونی از این ذرات شکل گرفتند.
     
  • 4.5 میلیارد پیش ، زمین دارای سطحی داغ ، قرمز و نیمه مذاب بود. پس از گذشت میلیونها سال ، سطح زمین شروع به سرد شدن نمود و پوسته جامدی ، به دور زمین بوجود آمد. گازهای داغ و مواد مذاب از لایه‌های زیرین و از طریق دهانه‌های آتشفشانی بیرون زده و جو ضخیم زمین را بوجود آوردند. در همین مدت شهاب سنگهای زیادی به سطح زمین خوردند و هزاران گودال شهاب سنگی را در سطح زمین بوجود آورد. و مقدار زیادی غبار به جو زمین اضافه کردند.
     
  • پس از یک میلیارد سال ، زمین به اندازه کافی سرد شده بود تا بخار آب موجود در جو متراکم شده و قطرات آب را بوجود آورد. این قطرات آب میلیونها سال به شکل باران شدید به سطح زمین افتاده ، باعث پاک شدن جو زمین و بوجود آمدن اقیانوس شدند. کره زمین به تدریج به شکل کنونی درآمده است.


 

img/daneshnameh_up/7/7e/Atashfeshan.jpg
زمین در آغاز شکل گیری
با سرد شدن زمین ، شرایط لازم برای
پیدایش حیات در آن فراهم شدند.

 

نحوه پیدایش و تکامل زمین

زمین در بدو پیدایش بصورت کره‌ای از مواد بسیار داغ و نیمه مذاب بوده که به تدریج عناصر سنگین‌تر ته‌نشین شده و هسته فلزی را به وجود آوردند ، و در عین حال عناصر سبکتر به سطوح فوقانی آمده و جبه و پوسته را تشکیل دادند. پس از گذشت میلیاردها سال زمین سرد شد، سطح زمین جامد گشت، جو زمین شکل گرفت، و اقیانوسها بوجود آمدند. تکامل زمین هنوز ادامه دارد. پوسته زمین توسط فورانهای آتشفشانی در کف اقیانوسها نوسازی شده و دائما بر اثر زمین لرزه‌ها وحرکتهای قاره‌ای در حال تغییر و تحول است. تناسب گازهای مختلف در جو زمین نیز بر اثر دخالتهای انسان به آرامی در حال تغییر است. 

مشخصات زمین

  • زمین سیاره‌ای است منحصر بفرد ، دارای آب مایع و جوی که قسمت اعظم آن از نیتروژن و اکسیژن تشکیل شده که تداومحیات را ممکن می‌سازند. در منظومه شمسی ، زمین پنجمین سیاره از لحاظ بزرگی و سومین سیاره نزدیک به خورشید است. چگالی زمین از تمامی سیارات بیشتر است.
     
  • زمین در منظومه شمسی دو نوع حرکت ، وضعی و انتقالی دارد. در حرکت وضعی زمین در یک شبانه روز به دور خودش می‌چرخد و در حرکت انتقالی در یک سال مداری بیضی شکل حول خورشید را طی می‌کند (مدار زمین).


 

img/daneshnameh_up/6/6b/Zaminemeghnatisi.jpg

 

کره مغناطیسی

  • با چرخش زمین به دور خودش ، چرخه‌هایی در هسته خارجی آن که از آهن مذاب تشکیل شده بوجود آمده ، جریانهای الکتریکی تولید می‌کنند. این جریانها باعث ایجاد یک میدان مغناطیسی در فضای اطراف زمین شده و پوششی محافظ در اطراف آن ایجاد می‌کنند (کمربند تشعشعی زمین). این میدان که کره مغناطیسی نامیده می‌شود، زمین را در برابر جریانهای سریع ذرات باردار بادهای خورشیدی محافظت می‌کند.
     
  • بعضی از این ذرات در دو نقطه میدان مغناطیسی به نام کمربندهای «وان آلن» به دام می‌افتد. کره مغناطیسی بیشتر بادهای خورشیدی را از زمین دور می‌کند، اما جریانهای ذرات باد خورشیدی آنقدر قوی هستند که قسمت جلویی کره مغناطیسی را مسطح نموده و باعث کشیدگی عقب آن می‌شوند.


 

img/daneshnameh_up/0/04/Sakhtarezamin.jpg

 

آینده زمین

از آنجا که حیات در زمین) وابسته به خورشید است، آینده کره زمین نیز به آینده خورشید وابسته خواهد بود. حدود 5 میلیارد سال دیگرذخایر انرژی خورشید تمام شده و خورشید به یک غول سرخ تبدیل می‌شود و افزایش حجم می‌دهد. گرمای شدید حاصل از افزایش حجم باعث آب شدن یخ مناطق قطبی و بالا آمدن آب اقیانوس می‌شود. سپس جو زمین شروع به تبخیر می‌کند و گیاهان خشک آتش می‌گیرند. در چنین شرایطی امکان حیات در زمین کلا از بین می‌رود. 

انتظار نجومی

  • شاید انسان در آینده بتواند قبل از وقوع فاجعه‌های فوق زمین را به جایی دورتر از خورشید منتقل کند.
  • شاید امکانات آینده ، انسانهای آن زمان به سیاره قابل سکونت دیگری کوچ کنند.
  • شاید بشر بتواند مانع از وقوع فاجعه‌های فوق در خورشید و زمین شود.
  • باید پنج میلیارد سال انتظار کشید.


 

مقدمه

خورشید ستاره‌ای است از ستارگان رشته اصلی که 5 میلیارد سال از عمرش می‌گذرد. این ستاره کروی شکل بوده و عمدتا از گازهای هیدروژن و هلیوم تشکیل شده است. وسعت این ستاره 1.4 میلیون کیلومتر (870000 مایل) است. جرم این ستاره 7 برابر جرم یک ستاره معمولی بوده و همچنین 750 برابر جرم تمامسیاراتی است که به دورش می‌چرخند. در هسته خورشید ، جرم توسط واکنشهای هسته‌ای تبدیل به تشعشعات الکترومغناطیسی که نوعی انرژی هستند، می‌شود. این انرژی به سمت بیرون تابانده شده و باعث درخشنگی خورشید می‌گردد. سایر اجسام آسمانی موجود در منظومه شمسی که توسط جاذبه خورشید در مدارهایشان قرار گرفته‌اند نیز گرمایشان را از این انرژی می‌گیرند. 

 

img/daneshnameh_up/2/24/Sakhtarekhorshid.jpg





مواد تشکیل دهنده خورشید حالت گازی دارند، بنابراین خورشید محدوده دقیق و معینی نداشته و مواد اطراف آن بتدریج در فضا منتشر می‌شوند. اما چنین به نظر می‌رسد که خورشید لبه تیزی داشته باشد، چرا که بیشتر نوری که به زمین می‌رسد از یک لایه که چند صد کیلومتر ضخامت دارد ساطع می‌شود. این لایه فوتوسفر نام داشته و به عنوان سطح خورشید شناخته شده است. بالای سطح خورشید ، کروموسفر یا رنگین کره و هاله خورشیدی قرار دارند که با همدیگر جو خورشید را تشکیل می‌دهند.

مرکز خورشید مانند کوره‌ای هسته‌ای است با دمای 15 میلیون درجه سانتیگراد (27 میلیون درجه فارنهایت) که چگالی‌اش 160 برابر آب می‌باشد. تحت چنین شرایطی هسته‌های اتم هیدروژن باهم ترکیب شده و تبدیل به هسته‌های هلیووم می‌شوند. در این حین، 0.7 درصد جرم ترکیب شده ، تبدیل به انرژی می‌شود. از 590 میلیون تن هیدروژنی که در هر ثانیه در مرکز خورشید ترکیب می‌شوند، 3.9 میلیون تن به انرژی تبدیل می‌شود. این سوخت هیدروژنی ، تا 5 میلیارد سال دیگر دوام خواهد داشت. مسیر نامنظم 2 میلیون سال طول می‌کشد تا انرژی تولید شده در مرکز خورشید به سطح آن رسیده و بصورت نور و گرما تابش کند، سپس بعد از فقط 8 دقیقه ، این انرژی به زمین می‌رسد.

هنگامی که خورشید منبسط می شود تا تبدیل به یک غول سرخ شود، قطرش حدود 150برابر بزرگتر خواهد شد. گازهای منبسط شده و داغ، رنگ زرد و حرارت خود را از دست داده و قرمز رنگ و سرد خواهند شد. اما بخاطر بزرگتر شدن سطح خورشید،درخشندگی آن 1000برابر افزایش یافته و نور بیشتری ساطع خواهد کرد. 

 

img/daneshnameh_up/0/0c/Khorshid1.jpg

 

زبانه‌ها و شعله‌های خورشیدی

زبانه حلقوی در شکل پایین ، خطوط میدان مغناطیسی ، دو لکه خورشیدی را به هم متصل کرده است. در سال 1973 ، یک زبانه خورشیدی (سمت چپ تصویر) 000/588 کیلومتر (365.000 مایل) از سطح خورشید را پوشاند. اغلب فعالیتهای شدید خورشید در نزدیکی لکه‌های خورشیدی رخ می‌دهند. شعله‌های خورشیدی ، جرخه‌هایی از انرژی هستند که عمر چند ساعته دارند، این شعله‌ها هنگامی بوجود می‌آیند که مقدار زیادی انرژی مغناطیسی بطور ناگهانی آزاد شود. زبانه‌های خورشیدی ، فوارانهایی از گاز مشتعل هستند که ممکن است صدها هزار کیلومتر در فضا پیش بروند. میدان مغناطیسی خورشید می‌تواند زبانه‌های حلقوی را هفته‌ها در فضا پیش بروند معلق نگاه دارد. 

 

img/daneshnameh_up/a/a0/Zabanehayekhorshid.jpg

 

باد خورشیدی

هاله (جو بیرونی) خورشید حاوی ذراتی است که انرژی کافی برای فرار از جاذبه خورشید را دارند. این ذرات بصورت مارپیچی با سرعتی معادل900 کیلومتر (560 مایل) در ثانیه از خورشید دور شده و باد خورشیدی را بوجود می‌آورند. این ذرات در همان مسیرهای میدان مغناطیسی خورشید حرکت می‌کنند و از آنجا که دارای بار الکتریکی هستند، منظومه شمسی را پر از جریانات الکتریکی می‌کنند. ناحیه فعالیتهای خورشیدی ، هلیوسفر (کره خورشیدی) نامیده می‌شود. باد خورشیدی در هر ثانیه حدود یک میلیون تن هیدروژن حورشید را از بین می‌برد. 100000 میلیارد سال طول خواهد کشید تا باد خورشیدی تمام جرم خورشید را در فضای بین سیاره‌ای پخش کند، اما طول عمر طبیعی خورشید فقط 10 میلیارد سال است. 

 

img/daneshnameh_up/a/ab/Enerjikhorshid.jpg
مسیر نامنظم
دو میلیون سال طول می کشد تا انرژی تولید شده
در مرکز خورشید به سطح آن رسیده و بصورت
نورو گرما تابش کند، سپس بعد از فقط 8 دقیقه
این انرژی به زمین می رسد.

 

چرخه‌ها و لکه‌های خورشیدی

حرکت وضعی خورشید باعث ایجاد میدان مغناطیسی می‌شود، مناطق استوایی خورشید سریعتر از مناطق قطبی آن چرخیده و این امر باعث می‌شود که خطوط میدان مغناطیسی درون خورشید حلقه بزنند. این خطوط در صورت خروج از سطح خورشید ، باعث فعالیتهای خورشیدی نظیر لکه‌های خورشیدی ، شعله‌ها و زبانه‌های خورشیدی می‌شوند. این فعالیتها ، بخصوص لکه‌های خورشیدی ، چرخه‌ای 11 ساله دارند. 

مرگ خورشید

5 میلیارد سال بعد ، بیشتر هیدروژن موجود در هسته خورشید گداخته شده و صرف تهیه هلیوم خواهد شد. در آن زمان ، جاذبه باعث انقباض هسته شده و فشار ، دمای آنرا افزایش خواهد داد. هیدروژن شروع به سوختن در پوسته اطراف هسته خواهد کرد. انرژی حاصل از این گداخت هسته‌ای در پوسته ، باعث انبساط لایه‌های خارجی خواهد شد و سیارات عطارد و زهره را ذوب می‌کند و آنها را در بر می‌گیرد. انبساط خورشید تا مدار زمین متوقف شده و حرارتش تمام موجودات زنده را از بین می‌برد. بعد از آن خورشید تبدیل به یک غول سرخ می‌شود. سپس ، لایه‌های خارجی در فضا پخش شده و یکسحابی سیاره‌ای تشکیل خواهند داد. هسته نیز بصورت یک ستاره کوتوله سفید باقی مانده و بتدریج از بین خواهد رفت. پس می‌توان گفت که با فرا رسیدن مرگ خورشید ، مرگ زمین و تمام موجودات این سیاره فرا می‌رسد. 



 

img/daneshnameh_up/c/c3/Solarsystemscale.jpg

مقدمه

شکل گیری منظومه شمسی حدود 5 میلیارد سال پیش ، از ابری متشکل از گاز و غبار بین ستاره‌ای ، آغاز گردید. جاذبه باعث انقباض ابر شده و کره متراکمی از گاز در مرکز ابر بوجود آورد. جاذبه همچنین باعث دوران هر چه سریعتر ابر شد. هنگام دوران، مواد موجود در ابر، پهن شده و حلقه ای به وجود آمد که نواحی متراکم مرکزی را در بر می گرفت. سرانجام در این ناحیه متراکم ، گرمای لازم برای وقوع واکنشهای هسته‌ای فراهم گشت و بدین ترتیب ، ستاره خورشید بوجود آمد. اعضای کوچکتر منظومه شمسی از مواد موجود در این حلقه بوجود آمدند. این اعضاء عبارتند از سیارات ، سیارکها و ستاره دنباله دار



img/daneshnameh_up/2/2b/Solarsystem.jpg
img/daneshnameh_up/2/22/Manzoomeshamsi.jpg
میلیونها سال طول کشید تا منظومه
شمسی از ابری متشکل ازگاز و غبار ، پدید آمد.

خانواده منظومه شمسی

تمام اجرام آسمانی که در یک منظومه مداری قرار دارند، تحت تأثیر جاذبه‌ای دو جانبه به دور یک جرم مشترک مرکزی می‌چرخند. در منظومه زمین _ ماه مرکز جرم مشترک در فاصله 4748 کیلومتری (2950مایلی) هسته زمین قرار داشته و از سطح زمین خارج نشده است. در مورد منظومه شمسی ، مرکز جرم مشترک همواره با تغییر موقعیت نسبی سیاره‌ها ، در حال تغییر است. این مرکز در فاصله‌ای حدود 300000 کیلومتر (186000 مایل) خارج از سطح خورشید قرار دارد. 

سیارات منظومه شمسی

تمام خصوصیات زیر در مقایسه با زمین می‌باشد

سیاره قطر
استوا
جرم شعاع
مدار
سال روز
عطارد 0.382 0.06 0.38 0.241 58.6
زهره 0.949 0.82 0.72 0.615 -243
زمین 1.00 1.00 1.00 1.00 1.00
مریخ 0.53 0.11 1.52 1.88 1.03
مشتری 11.2 318 5.20 11.86 0.414
زحل 9.41 95 9.54 29.46 0.426
سیاره اورانوس 3.98 14.6 19.22 84.01 0.718
نپتون 3.81 17.2 30.06 164.79 0.671
پلوتون* 0.24 0.0017 39.5 248.5 6.5
سدنا* - - - - -







img/daneshnameh_up/7/7c/Portraitdefamille.jpg
اندازه سیارات نسبت به خورشید و همینطور
محل قرار گرفتن قمرهای سیارات منظومه شمسی


 

صورتهای فلکی

صورتهای فلکی

مردمان باستان تصور می‌کردند که می‌توانند خطوط اصلی چهره‌ها را، در ستارگان آسمان شب پیدا کنند. این چهره‌ها معمولاً شکل‌هایی از قهرمانان، اساطیر، خدایان افسانه‌ای، مخلوقات گوناگون و اجرامی بود‌ند که به نظر آنها بر روی زمین اثر گذار ند. این مفهوم عامیانه صورت فلکی است. اما در ستاره‌شناسی نوین، لغت صورت فلکی به بخشی از آسمان اطلاق می‌شود که در مرحله‌ی اول اشکالی را تداعی می‌کند که هزارها سال پیش برای اولین بار مورد توجه انسان‌های باستانی قرار گرفته است. این مناطق بر روی کره‌ی سماوی، مانند استان‌ها یا کشورهای مختلف بر روی نقشه‌های زمینی هستند.

صورتهای فلکی

در حال حاضر هر نقطه‌ای از آسمان بالای سر ما، حتماً متعلق به یک صورت فلکی است. حد فاصل بین صورت‌‌های فلکی در قالب خط مستقیم بوده ولی شکل‌ها می‌توانند کاملاً غیرمتقارن و غیرهندسی باشند. به هر تقدیر، هر صورت فلکی تعدادی از ستارگان آسمان را درون محدوده‌ی خود جای می‌دهد.

صورتهای فلکی

صورت فلکی برای ایجاد راحتی و تسهیل در شناخت اجرام و پیدا کردن بخش خاصی از آسمان مفید است. از دید ما، می‌توان تصور کرد که تمام ستارگان درون محدوده‏ی یک صورت فلکی، از نظر فیزیکی با هم در ارتباط هستند. از آنجا که با چشم غیرمسلح نمی‌توان عمق فضا را تشخیص داد، لذا انسان همه‌ی ستارگان را در یک صفحه و ظاهراً در یک فاصله و بسیار نزدیک به هم می‌بیند. در حقیقت هر ستاره‌ای می‌تواند در فاصله‌ی زیادی نسبت به دیگری قرار گیرد که این جدایی تا حد صدها و حتی هزارها سال نوری هم می‌رسد.

صورتهای فلکی

در بین تمدن‌های باستانی اولین فرهنگ‌هایی که شروع به طبقه‌بندی آسمان برای نامگذاری نمودند عبارتند از: بابلی‌ها، هندی‌ها، یونانی‌ها، رومی‌ها، چینی‌ها و میان قاره‌ی آمریکا. انسان‌های ساکن در نیمکره‌ی شمالی قادر بودند فقط ستارگان قابل دید در این نیمکره را شناسایی و طبقه‌بندی نمایند، زیرا ستارگان عرض‌های جنوبی و پایین‌تر از آن نقاط، قابل رؤیت نبودند.

صورتهای فلکی

در قرن دوم میلادی بطلمیوس، ستاره‌شناس یونانی ـ‌مصری، توانست بیش از 1000 ستاره را در قالب 48 صورت فلکی در کتاب مجستی فهرست نماید. این صورت‌های فلکی که یادمان دوران عتیق است، به نام «صورت‌های فلکی باستانی»نامیده می‌شوند.

صورتهای فلکی

از قرن 16، که اروپایی‌ها به کشف مناطق جنوبی کره‌ی زمین پرداختند، فهرست ستارگان نیمکره‌ی جنوبی برای دنیای غرب شناخته شد. این صورت‌های فلکی جدید را  «صور فلکی نوین» می‌نامند.

صورتهای فلکی

معمولاً نامگذاری صورت‌های فلکی باستانی بر اساس شکل آنهاست. صورت‌های فلکی جبار و اسد ظاهراً به شکلی هستند که آنها را نامیده‌اند. تعدادی از صورت‌های فلکی نوین را از روی بعضی از اختراعات، نظیر میکروسکوپ و تلسکوپ نامگذاری نموده‌اند. شکل‌ها (مثلاً خطوط واصل بین ستاره‌ها) در اصل اختیاری بوده و ممکن است روی نقشه‌های مختلف متفاوت باشند.

صورتهای فلکی

بعضی از صورت‌های فلکی دارای بخش کوچکتری درون منطقه‌ای وسیع هستند، مانند قسمت ملاقه یا آبگردان درون خرس بزرگ. قبل از سال 1930 هر کسی هر قسمتی از آسمان را به طور دلخواه می‌توانست به هر اسمی بنامد و در نتیجه هیچ گونه مرز تعریف شده‌ای در اطراف صور فلکی وجود نداشت. لذا برای رفع شبهه و ایجاد یگانگی، ستاره‌شناسان جهان در سال 1930 تصمیم گرفتند که نام‌های خاصی (به زبان لاتین) به همراه مرزی مشخص برای کلیه‌ی صورت‌های فلکی انتخاب کنند. این همان حدود و اسم‌هایی است که امروزه در سطح جهانی پذیرفته شده است.

صورتهای فلکی

 

در زیر نام صورت‌های فلکی آورده شده است :

 

 

 

ردیف نام صورت فلکی علامت لاتین نام لاتین بهترین زمان مشاهده در آسمان
1 آندرومدا، شاهزاده، زن در زنجیر، امراه المسلسله And Andromeda آبان
2 اژدها، تِنین Dra Draco تیر
3 اسب بالدار، فَرَس اعظم Peg Pegasus مهر
4 اسد، شیر Leo Leo فروردین
5 اکلیل شمالی، تاج شمالی، افسر شمالی CrB Corona Borealis تیر
6 برساوش، قهرمان Per Perseus دی
7 تازی‌ها، سگ‌های شکاری CVn Canes Venatici اردیبهشت
8 تکشاخ Mon Monoceros اسفند
9 ثور، گاو Tau Taurus دی
10 جام، پیاله، باطیه، معلف Crt Crater اردیبهشت
11 غراب، کلاغ، زاغ Crv Corvus اردیبهشت
12 جبار، شکارچی Ori Orion بهمن
13 جَدی، بز دریایی، بزغاله، بز ماهی Cap Capricornus شهریور
14 جوزا، دو پیکر Gem Gemini اسفند
15 حَمَل، بره، گوسفند Ari Aries آذر
16 حوا، مارافسای، حامل مار Oph Ophiuchus مرداد
17 حوت، ماهی Psc Pisces آبان
18 حوت جنوبی، ماهی جنوبی PsA Piscis Austrinus مهر
19 خرگوش، اَرنَب Lep Lepus بهمن
20 دب اصغر، خرس کوچک UMi Usra minor تیر
21 دب اکبر، خرس بزرگ UMa Usra major فروردین
22 دجاجه، قو Cyg Cygnus قو
23 دلفین Del Delphinus شهریور
24 دلو، ریزنده آب Aqr Aquarius مهر
25 ذات الکرسی، ملکه، خداوند کرسی Cas Cassiopeia آبان
26 روباه، روباهک Vul Vulpecula شهریور
27 زرافه، شترگاوپلنگ Cam Camelopardus بهمن
28 سپر Sct Scutum مرداد
29 سرطان، خرچنگ Cnc Cancer اسفند
30 سکستان، ذات السدس، سکستانت Sex Sextans فروردین
31 سنبله، دوشیزه Vir Virgo خرداد
32 سوسمار، مارمولک، بزمجه Lac Lacerta مهر
33 سهم، تیر، پیکان Sga Sagitta شهریور
34 سیاهگوش Lyn Lynx اسفند
35 شلیاق، چنگ رومی Lyr Lyra مرداد
36 شیرکوچک، اسد اصغر LMi Leo minor فروردین
37 عقاب Aql Aquila شهریور
38 عقرب، کژدم Sco Scorpius تیر
39 عوا، گاوران Boo Bootes خرداد
40 قطعه الفرس، اسب کوچک، پاره اسب، پونی Equ Equuleus شهریور
41 قوس، کماندار، نیم اسب Sgr Sagittarius مرداد
42 قیطس، هیولای دریایی، نهنگ Cet Cetus آذر
43 قیفاووس، سلطان Cep Cepheus مهر
44 کلب اصغر، سگ کوچک CMi Canis minor اسفند
45 کلب اکبر، سگ بزرگ CMa Canis major بهمن
46 کوره، تنور For   آذر
47 گیسوی برنیکه، موی برنیکه Com Coma Berenices اردیبهشت
48 مار، سر مار، دم مار Ser Serpens تیر و مرداد
49 مار آبی، مار دریایی، شجاع Hya Hydra فروردین
50 مثلث Tri Triangulum آذر
51 ممسک العنان، ارابه ران، عنان دار Aur Auriga دی
52 میزان، ترازو Lib Libra خرداد
53 نهر، جوی، رودخانه فلکی Eri Eridanus دی
54 هرکول، جاثی، پهلوان، بر زانو نشسته Her Hercules مرداد

 

 

صورتهای فلکی

 

صورت‌های فلکی نیم‌کره‌ی جنوبی :

 

این صورت‏های فلکی در جنوب میل منهای 30 درجه واقعند، لذا عمدتاً از عرض‏های جنوبی قابل مشاهده می‌باشند. در ایران هم تعدادی از آنها را، در عرض های پایینتر می‌توان دید.

 

 

ردیف نام صورت فلکی نام لاتین
1 آب مار، نر مار Hydrus
2 آپوس، پرنده بهشتی Apus
3 اِسکنه، قلک سنگتراشی Caelum
4 اکلیل جنوبی، تاج جنوبی Corona Australis
5 پرگار، قطب نما Circnus
6 تلسکوپ Telescopium
7 تیر حمال، شاه تخته Carina
8 ثُمن، اکتان، هشتک Octans
9 چلیپا، صلیب جنوبی Crux
10 حجار، سنگتراش Sculptor
11 حربا، آفتاب پرست Chamaeleon
12 حمامه، کبوتر Columba
13 خط کش، گونیا، تراز Norma
14 درنا Grus
15 ساعت Horlogium
16 سبع، گرگ Lupus
17 شبکه، تور Reticulum
18 شراع، بادبان Vela
19 طاووس Pavo
20 طوغان، توکان Tucana
21 عنقا، ققنوس، سیمرغ Phoenix
22 قطب نما Pyxis
23 قِنطورس، ظلیم Centaurus
24 کشتیدم Puppis
25 کوه میز، میز صحرایی Mensa
26 ماهی پرنده Volans
27 ماهی زرین، طلاماهی Dorado
28 مثلث جنوبی Triangulum Australe
29 مجمره، آتشدان، عودسوز Ara
30 مِفرغه الهوا، تلمبه بادی Antlia
31 مگس Musca
32 میکروسکوپ Microscopium
33 نقاش Pictor
34 هندی Indus

 

 

صورتهای فلکی

 

پیدا کردن صورتهای فلکی در آسمان

 

فکر می‏کنم علاقه مند شدید که این صورتهای فلکی را در آسمان پیدا کنید. برای این کار ابتدا باید یک نقشه آسمان شب را تهیه کنید که این صورتهای فلکی در آن‏ها مشخص شده باشند و سپس با استفاده از نقشه و دوربین دو چشمی یا تلسکوپ می‌توانید ستاره های تشکیل دهنده این صورتهای فلکی را رصد کنید. البته اگر آسمان محل سکونتتان صاف باشد و آلودگی نوری نداشته باشد می‌توانید با چشمان غیرمسلح نیز به شکار این اجرام آسمانی بروید.

 

 

 

ساخت صورتهای فلکی

 ستاره هایی که در زیر می‌بینید را به هم وصل کنید تا صورتهای فلکی نهفته در هر یک را بتوانید ببنید.

 

 

 

 



 
img/daneshnameh_up/0/03/p31.jpg

 

نگاه اجمالی

ستاره شناسان اکثر مطالعات مفصل فضایی خود را از طریق رصدخانه‌ها انجام می‌دهند. محل رصدخانه یکی از مهمترین خصوصیات آن است زیرا تلسکوپها باید دور از نور شهرها مستقر شوند تا نور ضعیف ستارگان تحت شعاع قرار نگیرد. رصدخانه‌ها اغلب در کنار اقیانوس ساخته می‌شوند، زیرا هوای آنجا ثابت‌تر است و ستارگان کمتر سوسو می‌زنند، در نتیجه تصاویر شفافتری بدست می‌آیند. 

در آنجا تلسکوپها ، نوری را که از سیاره‌ها ، ستارگان و کهکشانهای دور دست می‌رسد، جمع می‌کنند. رصدخانه ، ساختمان ویژه‌ای به شکل گنبد دارد تا تلسکوپها را از باد ، باران و برف حفظ کند. در گنبد رصدخانه دریچه‌ای هست که از راه آن ، تلسکوپ را متوجه آسمان می‌کنند. در یک رصدخانه بزرگ ، چندین تلسکوپ بکار گرفته می‌شود، تا هر کدام به شیوه‌ای مخصوص مورد استفاده اخترشناسان قرار گیرند. 

شرایط یک رصدخانه

رصدخانه‌های مهم بر فراز کوهها بنا می‌شوند تا از مزاحمت ابرها به دور باشند. در کوهستان ، روشنایی شهر و خیابانهای آن نیز به حداقل می‌رسد. گاهی اختر شناسان برای رسیدن به تلسکوپهای خود ، هزاران کیلومتر راه طی می‌کنند. یک رصدخانه جدید علاوه بر اخترشناس ، به اشخاص دیگری برای کار باکامپیوترها ، ساختن تجهیزات و راه اندازی تلسکوپها نیاز دارد. کار با کامپیوترها نه تنها در نشانه روی خودکار تلسکوپ به طرف اجرام آسمانی بلکه در محاسبات بسیار مشکل به اخترشناس کمک می‌کنند. 

 

img/daneshnameh_up/d/df/Rasadkhaneh.jpg
گنبد محافظ
گنبد گران رصدخانه از تجهیزات در برابر عناصر
طبیعی محافظت می‌کند. باز شدن شکاف
سقف آن تلسکوب را آشکار می‌کند.

 

رصدخانه‌های معروف

رصدخانه ماونت پالومار

رصدخانه مشهور «ماونت پالومار» ، در کالیفرنیای جنوبی و در 160 کیلومتری لس‌آنجلس واقع است. اختر شناسان آمریکا ، رصدخانه جدیدی در آریزونا و بر فراز کوهستان «کیت پیک» تأسیس کرده‌اند. در حومه شهر توسکان ، چراغهای خیابانها را بخاطر این تلسکوپ به حداقل می‌رسانند. تلسکوپهای مهم بریتانیا ، در رصدخانه سلطنتی گرینویچ قرار دارد. 

رصدخانه سارس ویلز

با همکاری مشترک اخترشناسان بریتانیا ، رصدخانه‌ای در «سارس ویلز جدید» بر پا شده است. چهارمین تلسکوپ بزرگ جهان با آینه‌ای به قطر 3.9 متر در این رصدخانه است. در زیر گنبد آن تأسیسات دیگری مانند کتابخانه ، آشپزخانه و تاریکخانه برای ظهور عکسهای تهیه شده وجود دارد. اخترشناسان با فرا رسیدن روز ، در ساختمان مجاور این گنبد عظیم به استراحت می‌پردازند. 



img/daneshnameh_up/f/f9/p34.jpg

 

رصدخانه‌های نیمکره جنوبی

برای آنکه اطلاعات بیشتری از ستارگان و کهکشانهای آسمانی نیمکره جنوبی بدست آید. در آمریکای جنوبی ، استرالیا و جزایر قناری نیز رصدخانه‌های جدیدی ساخته‌اند. رصدخانه‌های جدیدی که در هوای صاف کوهستان «آند» در شیلی واقعند، به کاوش آسمان نیمکره جنوبی می‌پردازند. هر کدام از آنها به تلسکوپهای بسیار مدرن ، مجهز هستند. به این ترتیب از آسمان نیمکره جنوبی ، می‌توان عکسهایی با کیفیت خوب تهیه کرد. 

رصدخانه‌های رادیویی

بسیاری از کهکشانها ، موج رادیویی گسیل می کنند. این امواج با تلسکوپهای رادیویی بزرگ ، آشکار می شوند. خوشبختانه ، ابرها جلوی موج رادیویی را نمی گیرند. از این رو می توان رصدخانه‌های مخصوص اختر شناسی رادیویی را در نواحی ابرآلود نیز بنا کرد. در انگلستان ، رصد‌خانه های رادیویی بزرگی نزدیک منچسترو نیز کمبریج وجود دارد. چندین رصدخانه بزرگ هم ایالات متحد آمریکا ، روسیه و استرالیا مشغول کاوش هستند. از تلسکوپهای رادیویی نه تنها به هنگام شب بلکه در روز نیز می توان استفاده کرد.
 

img/daneshnameh_up/7/79/Manoakia.jpg
مشاهده ستارگان
در میان تلسکوپهای مائوناکیا 5 دستگاه از
بزرگترین تلسکوپهای دنیا از جمله تلسکوپ
«کک» وجود دارد که آینه‌ای به عرض 10 متر دارد.

 

مائوناکیا

ستاره شناسان کشورهای مختلفی از رصدخانه مدرن مائوناکیا در آتشفشانی خاموش در هاوایی استفاده می‌کنند. این رصدخانه 4200 متر (13800 پا) بالاتر از سطح دریا ، یعنی بالاتر از اکثر ابرها و در جزیره‌ای محصور با اقیانوس آرام قرار دارد. این شرایط ، مائوناکیا را یکی از بهترین محلهای رصد فضایی دنیا نموده است. مائوناکیا تصاویر فوق العاده شفافی از اجرام سماوی عرضه می‌کند. بخاطر استقرار این رصدخانه در چنان ارتفاعی ، تلسکوپهایش می‌توانند تشعشع مادون قرمز و مایکروویو را که توسط لایه‌های تحتانی جو متوقف می‌شوند، دریافت کنند.

پرتوهای x نمی توانند در جو زمین نفوذ بیشتری کنند. برای آشکار کردن آنها ، دانشمندان فضاشناس ، رصدخانه‌های خودکار ساخته اند. این رصدخانه‌ها در ارتفاع بسیار ، زمین را دور می زنند. تلسکوپهای آنها به کمک علائم رادیویی از زمین کنترل می‌شود و پرتوهای نامرئی x ستارگان را بررسی می‌کند. اخترشناسان امیدوارند که روزی رصدخانه‌هایی شامل چندین نوع تلسکوپ به دور زمین روانه کنند. در این صورت چگونگی هوا بر کار اخترشناسان تأثیر نخواهد گذاشت.



 

دید کلی

ستاره شناسی چیست؟ آیا آن را می‌توان شاخه‌ای از علوم قرار داد یا بیشتر به فلسفه نزدیک است؟ شاید امروزه ستاره شناسی بخشی از علوم هستند که کاربردهای مستقیمی چون علوم پزشکی و یا مهندسی ندارند) باشد، اما بی گمان در گذشته چنین نبوده است. امروزه ستاره شناسی را بخشی از علوم در نظر می‌گیرند که به مطالعه و درک پدیده‌های آسمانی می‌پردازد.

درک پدیده‌های آسمانی ، بخشی از تلاش سیری ناپذیر انسان در راه درک و شناخت نظم حاکم بر تمام طبیعت چه نقشی در زندگی بشر دارد، بحثی است که، شاید هرگز نتوان پاسخی عینی و مستقیم برای آن یافت. چرا که شاید پاسخ این سؤال خیلی شخصی باشد، اما آنچه مهم است، پاکی ، عظمت و دست نخوردگی اجرام بزرگ و دور دست عالم است که آن قدر وسوسه انگیزند که هر کسی را به مطاله خود فرا می‌خوانند و ستاره شناسی حاصل این فراخوان بزرگ است. 

 

تصویر



 

تعریف و ارتباط با علوم دیگر

اگر به دنبال یک تعریف مشخص از ستاره شناسی نوین باشیم، می‌توان آن را چنین بیان کرد؛ مطالعه موضع ، ساختار و چگونگی تحول (از آغاز تا پایان) اجرام آسمانی. در این زمینه ، علومی به کمک ستاره شناسی می‌آیند که هر یک پاسخگوی بخشی از پرسشهای این علم هستند. فیزیک بخش عمده‌ای از مشکلات ستاره شناسان را برطرف کنند، شیمی ،ریاضیات و مکانیک نیز از جمله علومی هستند که ارزشهای فراوانی برای ستاره شناسی و ستاره شناسان دارند. در سالهای اخیر حتی علمی مانند زیست شناسی به کمک ستاره شناسی آمده است و بحث موجودات برون زمینی ، مسأله پیدایش حیات و نیز امکان زندگی در دیگر کرات آسمانی ، رابطه روز افزون این دو علم را طلب می‌کند.

سایر علوم ، بخصوص علوم کاربردی (مانند شاخه‌های گوناگون مهندسی) نیز بحث فضاپیماها ، تلسکوپهای زمینی و فضایی غول پیکر را تکمیل می‌کند و از این طریق در گسترش ستاره شناسی قدم بر می‌دارد. رابطه ستاره شناسی و سایر علوم را در ادامه این سلسله مباحث و به تدریج متوجه خواهید شد و بی گمان در ادامه مسیر ستاره شناسی حتما متوجه می‌شوید که در هیچ حالتی قادر به حذف ارتباط یک یا چند رشته از علوم دیگر با ستاره شناسی نخواهید شد. 

 

تصویر
تلسکوپ فضایی هابل



 

اهداف و سرانجام

اکنون می‌دانید که ستاره شناسی چه هدفی را پیش رو دارد، شناخت اجرام آسمانی. اما سوال اساسی که بسیاری از افراد در ذهن دارند این است که آیا عاقبت ستاره شناسی ، تنها برآوردن نیازهای درونی و حسی افراد را در بر دارد یا آنکه ، فواید دیگری از این علم پر هزینه ، عاید جوامع بشری می‌شود؟ پاسخ دادن به پرسش فوق کار چندان ساده ای نیست. چرا که نیاز به داشتن اطلاعات جامع از علوم مختلف دارد. اما آنچه را که می‌توان بطور حتم و یقین بیان کرد، خدماتی است که ستاره شناسی به فیزیک ارائه کرده است.

اگر فیزیک را به دو بخش فیزیک کلاسیک و فیزیک نوین تقسیم بندی کنیم، برای هر بخش یک مفهوم و یک قانون اساسی می‌توان نام برد. در بخش فیزیک کلاسیک ، قوانین مکانیک نیوتنو در بخش فیزیک مدرن ، قوانین انیشتین (نسبیت خاص و عام) حاکمیت بی رقیبی دارند. در هر دو مورد (قوانین مکانیک نیوتنی و قوانین نسبیتی) بخشی از اثبات قوانین مذکور به عهده ستاره شناسی بوده است.

یعنی قسمتی از قوانین فوق با استفاده از رصدهای نجومی اثبات شده است (اثبات نجومی هر دو قانون را در درسهای آینده ذکر می‌کنیم.) از دیگر خدمات اخترشناسی می‌توان به بحثپیدایش حیات روی زمین اشاره کرد، اینکه آیا بطور کلی حیات سیاره ما زمین منشا آسمانی پاسخگویی آن خواهد پرداخت و کاربردهای دیگر خواهید کرد. 

 

img/daneshnameh_up/a/ad/aristarchus1.jpg
آریستارخوس



 

ستاره شناس کسیت و چه وظایفی دارد؟

ستاره شناسی را شناختیم، شاید ستاره شناسی تنها علمی باشد که هنوز می‌توان دو بخش حرفه‌ای و آماتور در آن فعالیت کرد. افراد آماتور ، کسانی هستند که بر حسب علاقه به این علم زیبا می‌پردازند و البته تحصیلات عالیه و شغل اصلی آنها در زمینه ستاره شناسی نیست، چنین افرادی در تاریخ نجوم زیاد بوده و هستند. سوزن بان قطار ، پزشک ، رمان نویس ، مدرس علوم دینی ، زمین شناس ، میکروبیولوژیست و ... ، اینها شغل بعضی از افرادی است که به نجوم آماتوری به عنوان یک سرگرمی علمی جدی روی آورده‌اند و پیشرفتهای فراوانی هم در این علم داشته‌اند. و اما ستاره شناس حرفه‌ای کسی است که تحصیلات دانشگاهی او در زمینه شاخه‌های مختلف ستاره شناسی است و به ستاره شناسی به عنوان یک شغل نگاه می‌کند. 

ارتباط ستاره شناسی حرفه‌ای و آماتوری

رابطه ستاره شناسی حرفه‌ای وآماتوری نیز در خور توجه است، در ابتدا برای بسیاری این گمان بوجود می‌آید که ستاره شناسی آماتوری ، مغلوب ستاره شناسی حرفه‌ای است و هیچ کاری وجود ندارد، در حالی که قضیه چیز دیگری است. یعنی حیطه فعالیت این دو گروه کاملا از هم جداست و به عبارتی ستاره شناسان آماتور و حرفه‌ای بطور ضمنی باهم در مورد نوع عملکردشان به توافق رسیده‌اند.

بسیاری از دنباله دارها ، سیارکها ، ستارگان انفجاری جدید (نواخترها و ابرنواخترها) توسط ستاره شناسان آماتور کشف شده‌اند. در حالی که این نوع اکتشافات در بخش ستاره شناسی حرفه‌ای یا اصلا انجام نمی‌شود و یا اگر انجام شود کاملا تصادفی است. 



 فضا (Space

مقدمه


 

تصویر





واژه‌ای است که در زمینه‌های متعدد و رشته‌های گوناگون از قبیل فلسفه ، جامعه‌شناسی ، معماری و شهرسازی بطور وسیع استفاده می‌شود. لیکن تکثّر کاربرد واژه فضا به معنی برداشت یکسان از این مفهوم در تمام زمینه‌های فوق نیست، بلکه تعریف فضا از دیدگاههای مختلف قابل بررسی است.

مطالعات نشان می‌دهد با وجود درک مشترکی که به نظر می‌رسد از این واژه وجود دارد، تقریباً توافق مطلقی در مورد تعریف فضا در مباحث علمی به چشم نمی‌خورد و این واژه از تعدد معنایی نسبتاً بالایی برخوردار است و تعریف مشخص و جامعی وجود ندارد که دربرگیرنده تمامی جنبه‌های این مفهوم باشد. فضا یک مقوله بسیار عام است. فضا تمام جهان هستی را پر می‌کند و ما را در تمام طول زندگی احاطه کرده‌ است و ... . 
فضا ماهیتی جیوه مانند دارد که چون نهری سیال ، تسخیر و تعریف آن را مشکل می‌نماید. اگر قفس آن به اندازه کافی محکم نباشد، به راحتی به بیرون رسوخ می‎کند و ناپدید می‌شود. فضا می‌تواند چنان نازک و وسیع به نظر آید که احساس وجود بعد از بین برود (برای مثال در دشتهای وسیع ، فضا کاملاً بدون بعد به نظر می‌رسد) و یا چنان مملو از وجود سه بعدی باشد که به هر چیزی در حیطه خود مفهومی خاص بخشد.

با اینکه تعریف دقیق و مشخص فضا دشوار و حتی ناممکن است، ولی فضا قابل اندازه‌گیری است. مثلاً می‌گوییم هنوز فضای کافی موجود است یا این فضا پر است. نزدیکترین تعریف این است که فضا را خلأی در نظر بگیریم که می‌تواند شیء را در خود جای دهد و یا از چیزی آکنده شود. نکته دیگری که در مورد تعریف فضا باید خاطر نشان کرد، این است که همواره بر اساس یک نسبت که چیزی از پیش تعیین شده و ثابت نیست، ارتباطی میان ناظر و فضا وجود دارد. بطوری‌ که موقعیت مکانی شخص ، فضا را تعریف می‌کند و فضا بنا به نقطه دید وی به صورتهای مختلف قابل ادراک می‌باشد. 

سیر تحول تاریخی مفهوم فضا

فضا مفهومی است که از دیرباز توسط بسیاری از اندیشمندان مورد توجه قرار گرفته و در دوره‌های مختلف تاریخی بر اساس رویکردهای اجتماعی و فرهنگی رایج ، به شیوه‎های گوناگون تعریف شده است. مصریها و هندیها با اینکه نظرات متفاوتی در مورد فضا داشتند، اما در این اعتقاد اشتراک داشتند که هیچ مرز مشخصی بین فضای درونی تصور (واقعیت ذهنی) با فضای برونی (واقعیت عینی) وجود ندارد. در واقع فضای درونی و ذهنی رویاها ، اساطیر و افسانه‌ها با دنیای واقعی روزمره ترکیب شده بود.

آنچه بیش از هر چیز در فضای اساطیری توجه را به خود معطوف می‌کند، جنبه ساختی و نظام یافته فضاست، ولی این فضای نظام یافته مربوط به نوعی صورت اساطیری است که برخاسته از تخیل آفریننده‌ می‌باشد. در زبان یونانیان باستان ، واژه‌ای برای فضا وجود نداشت. آنها بجای فضا از لفظ مابین استفاده می‌کردند. فیلسوفان یونان فضا را شیء بازتاب می‌خواندند.
 

  • افلاطون مسئله را بیشتر از دیدگاه تیمائوس (Timaeus) بررسی کرد و از هندسه به عنوان علم الفضاء برداشت نمود، ولی آن را به ارسطو واگذاشت تا تئوری فضا (توپوز) را کامل کند.
     
  • از نظر ارسطو فضا مجموعه‌ای از مکانهاست. او فضا را به عنوان ظرف تمام اشیاء توصیف می‌نماید. ارسطو فضا را با ظرف قیاس می‌کند و آن را جایی خالی می‌داند که بایستی پیرامون آن بسته باشد تا بتواند وجود داشته باشد و در نتیجه برای آن نهایتی وجود دارد. در حقیقت برای ارسطو فضا محتوای یک ظرف بود.
     
  • لوکریتوس (Lucretius) نیز با اتکاء به نظریات ارسطو ، از فضا با عنوان خلاء یاد نمود. او می‌گوید: همه کائنات بر دو چیز مبتنی است: اجرام و خلاء، که این اجرام در خلاء مکانی مخصوص به خود را دارا بوده و در آن در حرکت‌اند. در یونان و بطور کلی در عهد باستان دو نوع تعریف برای فضا مبتنی بر دو گرایش فکری قابل بررسی است:
     

تعریف افلاطونی که فضا را همانند یک هستی ثابت و از بین نرفتنی می‌بیند که هرچه بوجود آید، داخل این فضا جای دارد. تعریف ارسطویی که فضا را به عنوان Topos یا مکان بیان می‌کند و آن را جزئی از فضای کلی‌تر می‌داند که محدوده آن با محدوده حجمی که آن را در خود جای داده است، تطابق دارد. تعریف افلاطون موفقیت بیشتری از تعریف ارسطو در طول تاریخ پیدا کرد و در دوره رنسانس با تعاریف نیوتن تکمیل شد و به مفهوم فضای سه‌بعدی و مطلق و متشکل از زمان و کالبدهایی که آن را پر می‌کنند، درآمد. 

  • جیوردانو برونو (Giordano Bruno): در قرن شانزدهم با استناد به نظریه کپرنیک ، نظریه‌هایی در مقابل نظریه ارسطو عنوان کرد. به عقیده او فضا از طریق آنچه در آن قرار دارد (جداره‌ها) ، درک می‎شود و به فضای پیرامون یا فضای مابین تبدیل می‌گردد. فضا مجموعه‌ای است از روابط میان اشیاء و آنگونه که ارسطو بیان داشته است، حتماً نمی‎بایست که از همه سمت محصور و همواره نهایتی داشته باشد.

    در اواخر قرون وسطی و رنسانس ، مجدداً مفهوم فضا بر اساس اصول اقلیدسی شکل گرفت. در عالم هنر ، جیوتو نقش مهمی را در تحول مفهوم فضا ایفا کرد، بطوری‌که او با کاربرد پرسپکتیو بر مبنای فضای اقلیدسی ، شیوه جدیدی برای سازمان‎ دهی و ارائه فضا ایجاد کرد.

دوره رنسانس

با ظهور دوره رنسانس ، فضای سه ‌بعدی به عنوان تابعی از پرسپکتیو خطی معرفی گردید که باعث تقویت برخی از مفاهیم فضایی قرون وسطی و حذف برخی دیگر شد. پیروزی این شکل جدید از بیان فضا باعث توجه به وجود اختلاف بین جهان بصری و میدان بصری و بدین ترتیب تمایز بین آنچه بشر از وجود آن آگاه است و آنچه می‌بیند، شد.

در قرون هفدهم و هجدهم ، تجربه‌گرایی باروک و رنسانس ، مفهوم پویاتری از فضا را بوجود آورد که بسیار پیچیده‌تر و سازماندهی آن مشکلتر بود. بعد از رنسانس به تدریج مفاهیم متافیزیکی فضا از مفاهیم مکانی و فیزیکی آن جدا و بیشتر به جنبه‌های متافیزیکی آن توجه شد، ولی برعکس در زمینه‌های علمی ، مفهوم مکانی فضا پر رنگتر گشت. 

نظریه دکارت

دکارت از تأثیرگذارترین اندیشمندان قرن هفدهم ، در حدفاصل بین دوران شکوفایی کلیسا از یک ‌سو و اعتلای فلسفه اروپا از سویی دیگر ، می‌باشد. در نظریات او بر خصوصیت متافیزیکی فضا تأکید شده‌است، ولی در عین حال او با تأکید بر فیزیک و مکانیک ، اصل سیستم مختصات راست ‌گوشه (دکارتی) را برای قابل شناسایی کردن فاصله‌ها بکار برد که نمودی از فرضیه مهم اقلیدس درباره فضا بود. در روش دکارتی همه سطوح از ارزش یکسانی برخوردارند و اشکال به عنوان قسمتهایی از فضای نامتناهی مطرح می‌شوند. تا پیش از دکارت ، فضا تنها اهمیت و بعد کیفی داشت و مکان اجسام به کمک اعداد بیان نمی‌شد. نقش عمده او دادن بعد کمی به فضا و مکان بود 

نظریات لایب‌نیتز و نیوتن

لایب‌نیتز از طرفداران نظریه فضای نسبی بود و اعتقاد داشت، فضا صرفاً نوعی سیستم است که از روابط میان چیزهای بدون حجم و ذهنی تشکیل می‌شود. او فضا را به عنوان نظام اشیای همزیست یا نظام وجود برای تمام اشیایی که همزمان‌ هستند، می‌دید. بر خلاف لایب‎نیتز ، نیوتن به فضایی متشکل از نقاط و زمانی متشکل از لحظات باور داشت که وجود این فضا و زمان مستقل از اجسام و حوادثی بود که در آنها قرار می‌گرفتند.

در اصل ، او قائل به مطلق بودن فضا و زمان (نظریه فضای مطلق) بود. به عقیده نیوتن فضا و زمان اشیایی واقعی و ظرفهایی به گسترش نامتناهی هستند. درون آنها کل توالی رویدادهای طبیعی در جهان ، جایگاهی تعریف شده می‌یابند. بدین ترتیب حرکت یا سکون اشیاء در واقع به وقوع می‌پیوندد و به رابطه آنها با تغییرات دیگر اجسام مربوط نمی‌شود. 

نظریه کانت

1800 سال بعد از ارسطو ، کانت فضا را به عنوان جنبه‌ای از درک انسانی و متمایز و مستقل از ماده ، مورد توجه قرار داد. او جنبه‌های مطلق فضا و زمان در نظریه نیوتن را از مرحله دنیای خارجی تا ذهن انسان گسترش داد و نظریات فلسفی خود را بر اساس آنها پایه‌گذاری کرد. به عقیده کانت ، فضا و زمان مسائل مفهومی و شهودی هستند که دقیقاً در ذهن انسان و در ساختار فکری او جای دارند و از ارگانهای ادراک محسوب می‌شوند و نمی‌توانند قائم به ذات باشند.

فضا مفهومی تجربی و حاصل تجارب بدست آمده در دنیای بیرونی نیست. می‌توانیم صرفاً فضا را از دیدگاه انسان تعریف کنیم. فرای وضعیت ذهنی ما ، باز نمودهای فضا به هر شکلی که باشد، معنایی ندارد، چون که نه نشانگر هیچ یک از ویژگیها و مقادیر فضاست و نه نشانی از آنها در رابطه‌شان با یکدیگر. بدین ترتیب و با این دیدگاه آن چه ما اشیای خارجی می‌نامیم، هیچ چیز دیگری جز نمودهای صرف احساسهای ما نیستند که شکلشان فضاست. 

دیدگاه هگل

هگل به حقیقت فضا و زمان معتقد نبود. در نظر او زمان صرفاً توهمی است که ناشی از عدم توانایی ما در دیدن کل است. در فلسفه برگسون نیز فضا به عنوان مشخصه ماده از قطع جریانی برمی‌خیزد که حقیقت است. برعکس زمان خصوصیت اساسی زندگی یا ذهن است. به عقیده او زمان ، زمان ریاضی نیست، بلکه تجمع همگن لحظات است و زمان ریاضی در واقع شکلی از فضاست. 

 

img/daneshnameh_up/5/5e/origins.jpg



 

فضا در فیزیک

تعریف فضا در فیزیک مورد اختلاف است. عقاید متنوعی که برای تعریف فضا استفاده شده‌اند شامل موارد ذیل می‌باشند: 

  • ساختاری که با یک مجموعه از "ارتباطات فاصله‌ای" بین اشیاء تعریف شده است.
     
  • یک مانیفولد که بوسیله یک سیستم مختصات (جایی که یک شیئ می‌تواند قرار گیرد( تعریف شده باشد.
  • یک نهاد که تمام اشیاء موجود در جهان را از تماس با یکدیگر باز می‌دارد.
     

در فیزیک کلاسیک ، فضا یک فضای اقلیدسی سه بعدی است، جایی که هر موقعیتی با استفاده از سه مختصات توصیف می‌شود. فیزیک نسبیت از فضا-زمان بجای فضا استفاده می‌نماید، فضا-زمان به صورت یک مانیفولد چهار بعدی مدل شده است. سوالات فلسفی درباره فضا شامل:

آیا فضا مطلق یا بصورت خالص نسبیتی است؟ آیا فضا یک هندسه صحیح دارد یا اینکه هندسه فضایی فقط یک قرار داد است؟ شخصیتهای برجسته تاریخی مثل آیزاک نیوتن (Isaac Newton) (فضا مطلق است) ، لایب نیتز Gottfried Leibniz (فضا نسبیتی است) و هنری پوآنکاره (Henri Poincare) (هندسه فاصله‌ای یک قرار داد است)، از سردمداران این منازعه می‌باشند. فضا بخشهای نسبتا خالی کیهان است، بیرون از اتمسفر سیارات. گاهی به نام "فضای خارجی" نامیده می‌شود تا از فضای هوایی مکانهای خاکی تمیز داده شود.

از آنجائی که اتمسفر زمین هیچ سراشیبی یا بریدگی ناگهانی ندارد، بلکه بصورت تدریجی با افزایش ارتفاع رقیق می‌شود، هیچ مرز مشخصی بین فضا و اتمسفر وجود ندارد. در زمین ، به افرادی که بالاتر از ارتفاع 80 کیلومتری (50 مایل) سفر می‌کنند، فضانورد می‌گویند. ارتفاع 120 کیلومتری (400،000 فوت یا 75 مایل) مرزی را تعیین می‌کند که اثرات اتمسفر در هنگام بازگشت قابل توجه می‌شوند. همچنین غالبا ارتفاع 100 کیلومتری (یا 62 مایلی) برای مرز بین اتمسفر و فضا استفاده می‌شود.

 



صفحه قبل 1 2 صفحه بعد

 
 
نویسندگان
پیوندها
آخرین مطالب